
1

Trade-offs in Parallel
Programming

Vivek Sarkar
Department of Computer Science

Rice University

Quicksort with Parallel Tasks
(Recap from Lecture 34 and Lab 14)

public static ArrayList<Integer> quickSort(ArrayList<Integer> a) {!

 if (a.isEmpty()) return new ArrayList<Integer>();!

 ArrayList<Integer> left = new ArrayList<Integer>();!

 ArrayList<Integer> mid = new ArrayList<Integer>(); !

 ArrayList<Integer> right = new ArrayList<Integer>(); !

 int pivot = a.get(a.size()/2); // Use midpoint element as pivot!

 for (Integer i : a)!

 if (i < a.get(0)) left.add(i); // Use element 0 as pivot!

 else if (i > a.get(0)) right.add(i);!

 else mid.add(i)!

 // Now, left, mid, right contain the three partitions of !

 // array a with respect to pivot!

 // Continue on next slide ...!

Quicksort with Parallel Tasks
(Recap from Lecture 34 and Lab 14)

 FutureTask<ArrayList<Integer>> left_t = // Closure for recursive call!

 new FutureTask<ArrayList<Integer>>(!

 new Callable<ArrayList<Integer>>() {!

 public ArrayList<Integer> call() { return quickSort(left); } });!

 FutureTask<ArrayList<Integer>> right_t = // Closure for recursive call!

 new FutureTask<ArrayList<Integer>>(!

 new Callable<ArrayList<Integer>>() {!

 public ArrayList<Integer> call() { return quickSort(right); } });!

 // Execute each closure in a parallel thread!

 new Thread(left_t).start(); new Thread(right_t).start();!

 // Wait for result of FutureTask’s left_t and right_t !

 ArrayList<Integer> left_s = left_t.get(); // Sorted version of left!

 ArrayList<Integer> right_s = right_t.get(); // Sorted version of right!

 return left_s.addAll(mid).addAll(right_s);!

} // quickSort !

What were your experiences
with this example in Lab 14?

•  How much does the sequential execution time increase due to addition of
closures?
•  3% - 5% may be typical e.g., 4.3 seconds to 4.5 seconds for an array with

2,000,000 elements
•  What happens if you run the parallel version on a large array (e.g., 2,000,000

elements)?
•  java.lang.OutOfMemoryError is typical
•  Why does the parallel version need more memory than the sequential

version?
•  What happens if you only use two threads at the outermost level?

•  Some reduction in execution time is typical e.g., 4.5 seconds to 3 seconds
•  Why is it not reduced by a factor of 2 on a 2-core machine?

•  Other issues? e.g., variations in execution times due to JIT compilation

COMP 211, Spring 2010

Why does sequential execution time
increase with use of closures?

FutureTask<ArrayList<Integer>> left_t = // Closure for recursive call!

 new FutureTask<ArrayList<Integer>>(!

 new Callable<ArrayList<Integer>>() {!

 public ArrayList<Integer> call() { return quickSort(left); } });!

. . .!

ArrayList<Integer> left_s = left_t.get(); // Sorted version of left!

•  Extra overhead in allocating Callable and FutureTask objects
•  Extra overhead in get() operation on FutureTask
•  Impact of overhead depends on task granularity i.e., amount of work

being done inside FutureTask
•  Impact is not signficant (on average) for quickSort() method

COMP 211, Spring 2010

Why does the fully parallel version
run out of memory?

 // Execute each closure in a parallel thread!

 new Thread(left_t).start(); new Thread(right_t).start();!

•  Each new thread allocates space for a thread stack
(typically, 256KB – 512KB by default)

•  How many threads (approximately) are created when
sorting an array with 2,000,000 elements?

•  Also, when can space for intermediate arrays and closures
be reclaimed (garbage collected) in sequential vs. parallel
versions?

COMP 211, Spring 2010

Why does the 2-thread version not
speed up execution time by 2x on 2
cores?
•  Impact of overhead

•  Parallel version does more work (executes more instructions
in total) than sequential version due to creation of closures
and threads

•  Impact of serialization
•  Top-level quickSort() has four parts

•  S: Start program and split array
•  L: Recursively sort left subarray
•  R: Recursively sort right subarray
•  M: Merge subarrays and end program

•  What would be the “ideal” speedup if all four parts took the
same time?

COMP 211, Spring 2010

L

S

R

M

Computation Graph Abstraction

Computation graph abstraction:
•  Node = arbitrary sequential
computation
•  Edge = dependence (successor
node can only execute after
predecessor node has completed)

Processor abstraction:
•  P identical processors
•  Each processor executes one node
at a time PROC0 PROCP-1 . . .

Parallel Execution Time

Define
TP = execution time on P processors

Therefore,
T1 = total work

If you had an infinite (unbounded)
number of cores, then the
execution time will be determined
by the length of the longest path
from start to finish,

Computational Depth

T∞ = computational depth*

* Also called critical-path
length

Define
TP = execution time on P processors

Best-case Lower Bounds on
Parallel Execution Time

T1 = work

LOWER BOUNDS
• TP ≥ T1/P
• TP ≥ T∞

T∞ = depth

Parallelism (“Ideal Speedup”)

TP depends on the schedule of
computation graph nodes on the
processors
 Two different schedules can yield
different values of TP for the same P

For convenience, define parallelism (or
ideal speedup) as the ratio T1/T∞

Parallelism is independent of P, and
only depends on the computation graph

Amdahl’s Law
•  Consider a program in which fS is the fraction of work

that must be executed sequentially.
•  Let T1 be the total amount of work in the program
•  Then, in the best case, the parallel execution time

must be at least the sum of
•  fS * T1 (for the sequential part), and
•  (1- fS) * T1 / P (for the parallel part)

COMP 211, Spring 2010

Amdahl’s Law (contd)

Summary of Today’s Lecture

COMP 211, Spring 2010

•  Trade-offs in Parallel Programming
•  Overhead
•  Memory
•  Serialization

•  Computation Graph & Critical Path Length
•  Lower bounds and Amdahl’s Law

•  You can learn more about these topics in COMP 322 and
COMP 422!

