9“'_ Functions as Values

Corky Cartwright
Stephen Wong
Rice University

k&m Functional Abstraction

- A powerful tool

- Makes programs much more concise
- Avoids redundancy
- Promotes “single point of control” (no code
duplication)
- Generally involves polymorphic contracts
(contracts containing type variables)

- What we cover today for lists applies to any
recursive (self-referential) type

COMP 210, Fall 2011 2

L&W Look for the pattern

One function:
; addl-each :

(list-of number) -> (list-of number)
; Purpose: adds one to each number in list
(define (addl-each 1)

(cond [(empty? 1) empty]
[else

(cons (addl (first 1))
(addl-each (rest 1)))1))

COMP 210, Fall 2011

L&W Look for the pattern

Another function:
; not-each : (listOf boolean) -> (l1listOf boolean)

; Purpose: complements each boolean in the list

(define (not-each 1)
(cond [(empty? 1) empty]
[else (cons (not (first 1))
(not-each (rest 1)))1))

COMP 210, Fall 2011 4

Codify the pattern

Abstracting with respect to addi, not, and the
element type in the lists:
; map : (X -> X), (listOf X) -> (listOf X)
; applies £ to each element in 1
(define (map £ 1)

(cond [(empty? 1) empty]

[else (cons (f (first 1))
(map £ (rest 1)))1))

COMP 210, Fall 2011

Generalize the pattern (and typing)

Do all occurrences of X in contract of map need to be
of the same type?

;y map : (X -> Y) (list-of X) -> (list-of Y)
; Purpose: (map f 1) returns the list consisting of £
; applied to each element in 1

(define (map £ 1)
(cond [(empty? 1) empty]
[else (cons (f (first 1))
(map £ (rest 1)))]))

COMP 210, Fall 2011 6

k«&dm Tip on Generalizing Types

- When we generalize, we only replace

- specific types (like number or symbol) or type
variables (like X or ¥)

- by (other) type variables

- We almost never replace a type by the type

any, which actually means

number | boolean | list-of number |
list-0of ... | number -> number |

- What goes wrong 1f we use any? We cannot instantiate
(bind) any as a custom type

COMP 210, Fall 2011 7

L&m Use the pattern

* map can be used with any unary function.
(map not 1)

(map sqgr 1)
(map length 1)
(map first 1)
(map symbol? 1)

- Note: other recursive data types also
have maps!

COMP 210, Fall 2011 8

SLW More about map

. Powerful tool for parallel computing!

. Aside: functional programming generally supports
parallelism (a theme developed in Comp 322) because
every disjoint sub-expression can be independently
evaluated. In every function application (£ argl ..
argn), the arguments can be evaluated in parallel. In
fact, the evaluation of £ can be started as well, but it
must wait for argument values (futures).

. Has elegant properties (from mathematics):
. (map £ (map g 1)) = (map (compose f g) 1)
Soon we will see how to define compose

. For fun: Checkout Google’s “map/reduce”

COMP 210, Fall 2011 9

A Better notation for function values

Assume we want to square all of the elements in a list. How can we do this
using map in @ compact expression? We need simple notation for denoting new
functions without the overhead of introducing a name for the function, e.g.,

using . Alonzo Church invented such an notation in the 1930's called
lambda-notation. In Church's scheme

A . M
denotes the function f defined by the equation
fix) =M.

Lisp (the progenitor of Scheme) adopted this notation for functions. In
particular,

(Lambda (x;, .. x) E)

denotes the function £ defined by:
(define (f x;, .. x) E)

In fact, a top-level function definition
(define (f x;, .. x) E)

can also be written
(define £ (lambda (x, .. x) E))

COMP 210, Fall 2011 10

l&m Examples of 1ambda

; square the elements in a list
(map (lambda (x) (* x x)) '(1 2 3 4))
=>*% '(1 4 9 16)

; compose: (Y -> Z) (X -> YY) -> (X -> Z)

; Purpose: (compose f g) returns the composition
; of unary functions f and g;

(define (compose f g) (lambda (x) (f (g x))))

(map (compose addl square) '(1 2 3 4))
=>* '(2 5 10 17)

Expressing lambda using local is straightforward, but ugly
(lambda (x, ... X)) M) <=>
(local [(define (new-v x, ... x) M)] new-v)

where new-v is a fresh variable.

COMP 210, Fall 2011 11

k&m Templates as functions

- Recall the template for lists:
(define (f 1)

o

; (cond

; [(empty? 1) ...]

; [else ... (first 1)

; ... (£ (rest 1)) ... 1))

Can we construct a function £oldr that takes the
"..." for empty? and the "..." for else as
parameters init and op? Yes. The op parameter
must be a function because it must process
(first 1) and (fn (rest 1)).

COMP 210, Fall 2011 12

Templates as functions

The abstraction looks just like this:
; the contract is not obvious;
(define (foldr op init 1)
(cond [(empty? 1) init]
[else
(op (first 1)
(foldr op init (rest 1)))1]))

Intuitively,

(foldr op init (list el ... en))
=>* (op el (op e2 ... (op en init) ...)))
which is

el op (... (en op init) ...))

in infix notation.

Can we express all functions we’ve written using foldr?
What is the type of foldr?

COMP 210, Fall 2011 13

\:ﬁw map IN terms of foldr

Can we write map in terms of foldr ?
Yes.
; map: (X->Y) list-of-X -> list-of-Y
(define (map £ 1)
(foldr (lambda (x 1) (cons (f x) 1))
empty
1))
Note that £foldr performs the

recursion.

COMP 210, Fall 2011 14

k&m What is the type of foldr?

; foldr: (X X -> X) X list-of-X -> X

Reasoning: in (foldr op init alox), alox iS a list-of-X
for some type X, implying (in simple cases) that op is a binary
operation on values of type X and init is a value of type X.

But there is a more general type for cases when op returns a
different type Y than its first input type X. Since op takes its
output type as its second argument type, op must have type X
Y -> Y. Similarly, init must have type ¥ and the output of
foldr must have type Y.

; foldr: (X ¥ ->Y¥) Y (list-of X) -> Y

; (foldr op init (list el ... en)) returns
; (opel (... (op en init) ...)) which is
; el op (... (en op init) ...)) in infix notation

COMP 210, Fall 2011 15

a fuNctions be written using £foldr?

Should all our template-based
k

Some functional programmers would say yes.

But the two justifications for introducing
abstractions are:

- to eliminate duplication of code that
conceivably could be changed
- to simplify reasoning about programs

Could the definition of £oldr conceivably change.
No.

Is the foldr abstraction helpful in reasoning
about functions defined using it? Debatable.

Is the £foldr definition of map easier to
understand? I think not.

COMP 210, Fall 2011 16

l&m For Next Class

- Homework due next Monday. Don't
dally.

- Reading:
- Ch 21-22: Abstracting designs and first
class functions

COMP 210, Fall 2011 17

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

