
COMP 322: Fundamentals of Parallel Programming

Lecture 13: Parallelism in Java Streams,
Parallel Prefix Sums

Zoran Budimlić and Mack Joyner
{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 13 7 February 2018

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Worksheet #12: Forall Loops and Barriers
Draw a “barrier matching” figure similar to lecture 12 slide 11 for the code fragment below.

1. String[] a = { “ab”, “cde”, “f” };

2. . . . int m = a.length; . . .

3. forallPhased (0, m-1, (i) -> {

4. for (int j = 0; j < a[i].length(); j++) {

5. // forall iteration i is executing phase j

6. System.out.println("(" + i + "," + j + ")");

7. next();

8. }

9. });

2

Solution

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

How Java Streams addressed pre-Java-8 limitations of Java
Collections

1. Iteration had to be performed explicitly using for/foreach loop, e.g.,
// Iterate through students (collection of Student objects)
for (Student s in students) System.out.println(s);

⇒ Simplified using Streams as follows
students.stream().foreach(s -> System.out.println(s));

2. Overhead of creating intermediate collections
List<Student> activeStudents = new ArrayList<Student>();
for (Student s in students)
 if (s.getStatus() == Student.ACTIVE) activeStudents.add(s);
for (Student a in activeStudents) totalCredits += a.getCredits();

⇒ Simplified using Streams as follows

totalCredits = students.stream().filter(s -> s.getStatus() == Student.ACTIVE)
 .mapToInt(a -> a.getCredits()).sum();

3. Complexity of parallelism simplified (for example by replacing stream() by parallelStream())

3

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Java 8 Streams Cheat Sheet

Source: http://zeroturnaround.com/rebellabs/java-8-streams-cheat-sheet/
4

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Parallelism in processing Java Streams

• Parallelism can be introduced at a stream source …
— e.g., library.parallelStream()…

• … or as an intermediate operation
— e.g., library.stream().sorted().parallel()…

• Stateful intermediate operations should be avoided on parallel streams …
— e.g., distinct, sorted, user-written lambda with side effects

• … but stateless intermediate operations work just fine
— e.g., filter, map

• Parallelism is usually more efficient on unordered streams …
— e.g., stream created from unordered source (HashSet), or from .unordered() intermediate

operation

• … and with unordered collectors
— e.g., ConcurrentHashMap

5

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Beyond Sum/Reduce Operations —
Prefix Sum (Scan) Problem Statement

Given input array A, compute output array X as follows

• The above is an inclusive prefix sum since X[i] includes A[i]

• For an exclusive prefix sum, perform the summation for 0 <=j <i

• It is easy to see that inclusive prefix sums can be computed sequentially in O(n) time …
// Copy input array A into output array X

X = new int[A.length]; System.arraycopy(A,0,X,0,A.length);

// Update array X with prefix sums

for (int i=1 ; i < X.length ; i++) X[i] += X[i-1];

• … and so can exclusive prefix sums

6

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

An Inefficient Parallel Algorithm for Exclusive Prefix Sums

1. forall(0, X.length-1, (i) -> {
2. // computeSum() adds A[0..i-1]
3. X[i] = computeSum(A, 0, i-1);
4. }

Observations:

• Critical path length, CPL = O(log n)

• Total number of operations, WORK = O(n2)

• With P = O(n) processors, the best execution time that you can achieve is TP =
max(CPL, WORK/P) = O(n), which is no better than sequential!

7

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

How can we do better?

Assume that input array A = [3, 1, 2, 0, 4, 1, 1, 3]

Define scan(A) = exclusive prefix sums of A = [0, 3, 4, 6, 6, 10, 11, 12]

Hint:

• Compute B by adding pairwise elements in A to get B = [4, 2, 5, 4]

• Assume that we can recursively compute scan(B) = [0, 4, 6, 11]

• How can we use A and scan(B) to get scan(A)?

8

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Another way of looking at the parallel algorithm
Observation: each prefix sum can be decomposed into reusable terms of power-of-2-size e.g.

Approach:

• Combine reduction tree idea from Parallel Array Sum with partial sum idea from
Sequential Prefix Sum

• Use an “upward sweep” to perform parallel reduction, while storing partial sum terms in
tree nodes

• Use a “downward sweep” to compute prefix sums while reusing partial sum terms stored
in upward sweep

9

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Parallel Prefix Sum: Upward Sweep
(while calling scan recursively)

10

Upward sweep is just like Parallel Reduction, except that partial sums are also
stored along the way

1. Receive values from left and right children
2. Compute left+right and store in box
3. Send left+right value to parent

15

2

Input array, A:

4

6
15

5 4

9

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

1. Receive value from parent (root receives 0)
2. Send parent’s value to LEFT child (prefix sum for elements to left of left child’s

subtree)
3. Send parent’s value+ left child’s box value to RIGHT child (prefix sum for

elements to left of right child’s subtree)
4. Add A[i] to get inclusive prefix sum

+ A[i]

Exclusive prefix sums

Parallel Prefix Sum: Downward Sweep
(while returning from recursive calls to scan)

11

0

4

6
15

5 4

9

Inclusive prefix sums

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Summary of Parallel Prefix Sum Algorithm

• Critical path length, CPL = O(log n)

• Total number of add operations, WORK = O(n)

• Optimal algorithm for P = O(n/log n) processors
— Adding more processors does not help

• Parallel Prefix Sum has several applications that go beyond computing the
sum of array elements

• Parallel Prefix Sum can be used for any operation that is associative (need
not be commutative)

— In contrast, finish accumulators required the operator to be both
associative and commutative

12

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Parallel Filter Operation
[Credits: David Walker and Andrew W. Appel (Princeton), Dan Grossman (U. Washington)]

Given an array input, produce an array output containing only elements such that
f(elt) is true, i.e., output =
input.parallelStream().filter(f).toArray()

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

 f: is elt > 10

 output [17, 11, 13, 19, 24]

Parallelizable?
—Finding elements for the output is easy
—But getting them in the right place seems hard

13

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements (can use Java streams)
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector (not available in Java streams)
 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]
3. Parallel map to produce the output (can use Java streams)
 output [17, 11, 13, 19, 24]
  

14

output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){
 if(bits[i]==1)
 output[bitsum[i]-1] = input[i];
}

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Announcements & Reminders

• HW2 is available and due today by 11:59pm

• HW3 will be available today and due March 21st (two intermediate
checkpoints!)

• Quiz for Unit 2 (topics 2.1 - 2.6) is available on Canvas, and due by 11:59pm
on Monday

• Watch the topic 3.5, 3.6 videos for the next lecture

• Use Piazza (public or private posts, as appropriate) for all communications
re. COMP 322

• See Office Hours link on course web site for latest office hours schedule.

15

