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Worksheet #12: Forall Loops and Barriers
Draw a “barrier matching” figure similar to lecture 12 slide 11 for the code fragment below. 

1. String[] a = { “ab”, “cde”, “f” }; 

2. . . . int m = a.length; . . .  

3. forallPhased (0, m-1, (i) -> { 

4.   for (int j = 0; j < a[i].length(); j++) { 

5.     // forall iteration i is executing phase j 

6.     System.out.println("(" + i + "," + j + ")"); 

7.     next();    

8.   } 

9. });

2

Solution



COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

How Java Streams addressed pre-Java-8 limitations of Java 
Collections

1. Iteration had to be performed explicitly using for/foreach loop, e.g., 
// Iterate through students (collection of Student objects) 
for (Student s in students) System.out.println(s); 

⇒ Simplified using Streams as follows 
students.stream().foreach(s -> System.out.println(s)); 

2. Overhead of creating intermediate collections  
List<Student> activeStudents = new ArrayList<Student>(); 
for (Student s in students)  
     if (s.getStatus() == Student.ACTIVE) activeStudents.add(s); 
for (Student a in activeStudents) totalCredits += a.getCredits(); 

⇒ Simplified using Streams as follows 

totalCredits = students.stream().filter(s -> s.getStatus() == Student.ACTIVE) 
                           .mapToInt(a -> a.getCredits()).sum(); 

3. Complexity of parallelism simplified (for example by replacing stream() by parallelStream())
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Java 8 Streams Cheat Sheet

Source: http://zeroturnaround.com/rebellabs/java-8-streams-cheat-sheet/ 
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Parallelism in processing Java Streams

• Parallelism can be introduced at a stream source … 
— e.g., library.parallelStream()… 

• … or as an intermediate operation 
— e.g., library.stream().sorted().parallel()… 

• Stateful intermediate operations should be avoided on parallel streams … 
— e.g., distinct, sorted, user-written lambda with side effects 

• … but stateless intermediate operations work just fine  
— e.g., filter, map 

• Parallelism is usually more efficient on unordered streams … 
— e.g., stream created from unordered source (HashSet), or from .unordered() intermediate 

operation 

• … and with unordered collectors 
— e.g., ConcurrentHashMap
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Beyond Sum/Reduce Operations — 
Prefix Sum (Scan) Problem Statement

Given input array A, compute output array X as follows 

• The above is an inclusive prefix sum since X[i] includes A[i] 

• For an exclusive prefix sum, perform the summation for 0 <=j <i 

• It is easy to see that inclusive prefix sums can be computed sequentially in O(n) time … 
// Copy input array A into output array X 

X = new int[A.length]; System.arraycopy(A,0,X,0,A.length); 

// Update array X with prefix sums 

for (int i=1 ; i < X.length ; i++ ) X[i] += X[i-1]; 

• … and so can exclusive prefix sums
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An Inefficient Parallel Algorithm for Exclusive Prefix Sums

1. forall(0, X.length-1, (i) -> {  
2.    // computeSum() adds A[0..i-1] 
3.    X[i] = computeSum(A, 0, i-1); 
4. } 

Observations: 

• Critical path length, CPL = O(log n) 

• Total number of operations, WORK = O(n2) 

• With P = O(n) processors, the best execution time that you can achieve is TP = 
max(CPL, WORK/P) = O(n), which is no better than sequential!
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How can we do better?

Assume that input array A = [3, 1, 2, 0, 4, 1, 1, 3] 

Define scan(A) = exclusive prefix sums of A = [0, 3, 4, 6, 6, 10, 11, 12] 

Hint:  

• Compute B by adding pairwise elements in A to get B = [4, 2, 5, 4] 

• Assume that we can recursively compute scan(B) = [0, 4, 6, 11] 

• How can we use A and scan(B) to get scan(A)?
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Another way of looking at the parallel algorithm
Observation: each prefix sum can be decomposed into reusable terms of power-of-2-size e.g. 

Approach:  

• Combine reduction tree idea from Parallel Array Sum with partial sum idea from 
Sequential Prefix Sum 

• Use an “upward sweep” to perform parallel reduction, while storing partial sum terms in 
tree nodes 

• Use a “downward sweep” to compute prefix sums while reusing partial sum terms stored 
in upward sweep
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Parallel Prefix Sum: Upward Sweep 
(while calling scan recursively)
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Upward sweep is just like Parallel Reduction, except that partial sums are also 
stored along the way 

1. Receive values from left and right children 
2. Compute left+right and store in box 
3. Send left+right value to parent

15
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1. Receive value from parent (root receives 0) 
2. Send parent’s value to LEFT child (prefix sum for elements to left of left child’s 

subtree) 
3. Send parent’s value+ left child’s box value to RIGHT child (prefix sum for 

elements to left of right child’s subtree) 
4. Add A[i] to get inclusive prefix sum

+ A[i]

Exclusive prefix sums

Parallel Prefix Sum: Downward Sweep 
(while returning from recursive calls to scan)
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Summary of Parallel Prefix Sum Algorithm

• Critical path length, CPL = O(log n) 

• Total number of add operations, WORK = O(n) 

• Optimal algorithm for P = O(n/log n) processors 
— Adding more processors does not help 

• Parallel Prefix Sum has several applications that go beyond computing the 
sum of array elements 

• Parallel Prefix Sum can be used for any operation that is associative (need 
not be commutative) 

— In contrast, finish accumulators required the operator to be both 
associative and commutative
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Parallel Filter Operation 
[Credits: David Walker and Andrew W. Appel (Princeton), Dan Grossman (U. Washington)]

Given an array input, produce an array output containing only elements such that 
f(elt) is true, i.e., output = 
input.parallelStream().filter(f).toArray() 

Example:  input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 

        f: is elt > 10 

        output [17, 11, 13, 19, 24] 

Parallelizable? 
—Finding elements for the output is easy 
—But getting them in the right place seems hard
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Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements (can use Java streams) 
input  [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 
bits   [1,  0, 0, 0,  1, 0,  1,  1, 0,  1] 

2. Parallel-prefix sum on the bit-vector (not available in Java streams) 
 bitsum [1,  1, 1, 1,  2, 2,  3,  4, 4,  5] 
3. Parallel map to produce the output (can use Java streams) 
 output [17, 11, 13, 19, 24] 
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output = new array of size bitsum[n-1] 
FORALL(i=0; i < input.length; i++){ 
  if(bits[i]==1) 
    output[bitsum[i]-1] = input[i]; 
}
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Announcements & Reminders

• HW2 is available and due today by 11:59pm 

• HW3 will be available today and due March 21st (two intermediate 
checkpoints!) 

• Quiz for Unit 2 (topics 2.1 - 2.6) is available on Canvas, and due by 11:59pm 
on Monday 

• Watch the topic 3.5, 3.6 videos for the next lecture  

• Use Piazza (public or private posts, as appropriate) for all communications 
re. COMP 322 

• See Office Hours link on course web site for latest office hours schedule. 
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