COMP 322 / ELEC 323:
Fundamentals of

Parallel Programming
Lecture 1: Task Creation & Termination
(async, finish)

Instructors: Vivek Sarkar, Mack Joyner

Department of Computer Science, Rice University
{vsarkar, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 1 09 January 2017 |\

Your teaching staff!

e Undergraduate TAs

— Marc Canby, Anna Chi, Peter Elmers, Joseph
Hungate, Cary Jiang, Gloria Kim, Kevin Mullin, Victoria
Nazari, Ashok Sankaran, Sujay Tadwalkar, Anant
Tibrewal, Vidhi Vakharia, Eugene Wang, Yufeng Zhou

« Graduate TAs

— Jonathan Sharman, Ryan Spring, Bing Xue, Lechen

Yu
* Instructors
— Vivek Sarkar, Mack Joyner

2 COMP 322, Spring 2017 (V.Sarkar, M. Joyner) @

What is Parallel Computing?

 Parallel computing: using multiple processors in parallel to solve
problems more quickly than with a single processor and/or with less
energy

« Example of a parallel computer

—An 8-core Symmetric Multi-Processor (SMP) consisting of four dual-
core chip microprocessors (CMPs)

RAM

L3 Cache

|
< Front side bus
| | |

L

Memory bus controller Memory bus controller Memory bus controller Memory bus controller
CMP-0 CMP-1 CMP-2 CMP-3
L2 cache L2 cache L2 cache L2 cache
L1-1|L1-D| L1-1|L1-D || L1-I | L1-D| L1l [L1-D || L1-1 | L1-D| L1-1 |L1-D || L1-I | L1-D| L1l [L1-D
Processor | Processor || Processor | Processor || Processor | Processor || Processor | Processor Source: Figur‘e 1.5 of Lin & Snyder'
PO P1 P2 P3 P4 P P6 i book, Addison-Wesley, 2009

COMP 322, Spring 2017 (V.Sarkar, M. Joyner) p/@*»q

All Computers are Parallel Computers ---

Ka AE R IABEG < W

Grrenisnd whain v depsed - tha grest
Tt

Thars are iy ren boks b deing which o4 ol peviend
Ao ot tha Lrving mperm whale babuse yov, wad o1 the Tame
St 18 e rursetast Logren warcand is tha wiemge Thane
Bodks wre Blk's ind beaserre bk i Sal tew
TN Eaghed Souh e Wbl €hp, a0d Do et
Ml rakabie . The rOgAl BVTRE IUCAL Bt g
Whale e be Sound b s rebenes 14 i rainey tal
D P —

COMP 322, Spring 2017 (V.Sarkar, M. Joyner)

Why?

Computer Air Handling Unit (CRAC)

+Up To 30 Ton Sensible Capacity Per Unit

« Air Discharge Can Be Upflow Or Downflow Configuration

« Downflow Configuration Used With Raised Floor To Create
A Pressurized Supply Air Plenum With Floor Supply Diffusers

Individual Colocation Computer Cabinets
« Typ. Cabinet Footprint (28" W x 36"D x 84"H)
« Typical Capacities OF 1750 To 3750 Watts Per Cabinet

Power Distribution Unit (PDU) 3
« Typical Capacities Up To 225 KVA Per Unit
« Redundancy Through Dual PDU's With
Integral Static Trassfer Switch (STS)
[Emergency Diesel Generators
Total Generator Capacity = Total Electrical Load To Buikding
« Multiple Generators Can Be Electrically Combined With
Paralleling Gear
« Can Be Loeated Indoors Or Outdoors At Grade Or On Roof.
« Outdoor Applications Require Sound Attenuating Enclosures

i Fuel Oil Storage Tanks
« Tank Capacity Dependant On Length
Of Generator Operation

* Can Be Located Underground Or At
Colocation Suites Grade Or Indoors
« Modular Configuration For
Flexible Suite Sq.Ft. Arcas.
+ Suites Consist O Multiple Cabinets With
Secured Partitions (Cages, Walls, Etc.)

UPS System

« Uninterruptinle Power Supply Modules

+Up To 1000 kVA Per Module

« Cabinets And Battery Strings Or Rotary Flywheels

« Multiple Redundancy Configurations Can Be Designed
Electrical Primary Switchgear

« Includes Incoming Service And Distribution

+ Distribution To Mechanical Equipment

+ Distribation To Secondary Electrical Equipment Via UPS

Heat Rejection Devices Pump Room
« Drycoolers, Air Cooled Chillers, REF ;s ToPump CondenscChilled WaterBetween Dycoolers And CRAC Units

+ Up To 400 Ton Capacity Per Usit % « Additional Equipment Includes Expansion Tank, Gilycol Feed System

+ Mounted At Girade Or On Roof *N+1 Design (Standby Pump)
+N+1 Design

Moore’s Law and Dennard Scaling

Gordon Moore (co-founder of Intel) predicted
in 1965 that the transistor density of
semiconductor chips would double roughly every
1-2 years (Moore's Law)

= area of transistor halves every 1-2 years

= feature size reduces by /2 every 1-2 years
Slide source: Jack Dongarra

1975 1980 1985 1990 1995
r]
10M Micro 500
(transistors) 2000 (mips)
™ . 25
Pentidm”
. — Proocessor
B0486
100K @. 80386 1.0
‘ BO286
10K 308 01
d BO80
"OG" 0.01

Dennard Scaling states
that power for a fixed
chip area remains
constant as transistors
grow smaller

COMP 322, Spring 2017 (V.Sarkar, M. Joyner)

Recent Technology Trends

10,000,000

Chip density (transistors) is Source: Intel, Microsoft (Sutter)
increasing ~2x every 2 years + 000.000 1 and Stanford (Olukotun, Hammond) i
= number of processors | /.

doubles every 2 years as well 100.000

Clock speed is plateauing | | | | ;
below 10 GHz so that chip e T Wl

power stays below 100W

1,000

Instruction-level parallelism
(ILP) in hardware has also
plateaued below 10
instructions/cycle

100

10

=> Parallelism must be
managed by software! ,

= Transistors (000) | —
¢ Clock Speed (MHz)
& Power (W)

@ Perf/Clock (ILP)

0
6 COMP 3 1970 1975 1980 1985 1990 1995 2000 2005 2010

Parallelism Saves Power
(Simplified Analysis)

Nowadays (post Dennard Scaling), Power ~ (Capacitance) * (Voltage)’ * (Frequency)
and maximum Frequency is capped by Voltage

=>» Power is proportional to (Frequency)’

Baseline example: single 1GHz core with power P

Option A: Increase clock frequency to 2GHz =» Power = 8P

Option B: Use 2 cores at 1 GHz each = Power = 2P

« Option B delivers same performance as Option A with 4x less power ... provided
software can be decomposed to run in parallel!

7 COMP 322, Spring 2017 (V.Sarkar, M. Joyner))

A Real World Example
* Fermi vs. Kepler GPU chips from NVIDIA’s GeForce 600 Series

—Source: http://www.theregister.co.uk/2012/05/15/

nvidia_kepler tesla gpu revealed/

Fermi chip (released
in 2010)

Kepler chip (released
in I:5012) P

Number of cores 512 1,636
Clock frequency 1.3 GHz 1.0 GHz
Power 250 Watts 195 Watts

Peak double 1Pr'cacision
floating poin
performance

665 Gigaflops

1310 Gigaflops
(1.31 Teraflops)

8 COMP 322, Spring 2017 (V.Sarkar, M. Joyner)

What is Parallel Programming?

« Specification of operations that can
be executed in parallel Taslk A TCIISk B

« Aparallel program is decomposed
into sequential subcomputations
called tasks

 Parallel programming constructs
define task creation, termination, and
Interaction

/B]
R o i 1 i 5 47 e oy oo =|=l!r;.‘!

Schematic of a dual-core
Processor

9 COMP 322, Spring 2017 (V.Sarkar, M. Joyner) @

Example of a Sequential Program:
Computing the sum of arrav elements

Algorithm 1: Sequential ArraySum Computation Gr'aph

Input: Array of numbers, X.

Output: sum = sum of elements in array X.
sum « 0; 0 X[0]
for : < 0 to X.length — 1 do l

L sum < sum + X|i];
return sum; X[1]
Observations: X[2]
* The decision to sum up the elements from left /

to right was arbitrary

« The computation graph shows that all l

operations must be executed sequentially

10 COMP 322, Spring 2017 (V.Sarkar, M. Joyner)

Parallelization Strategy for two cores
(Two-wayv Parallel Arrav Sum)

Task O: Compute sum of Task 1: Compute sum of
lower half of array upper half of array
O,

|

Compute total sum

Basic idea:

 Decompose problem into two tasks for partial sums
« Combine results to obtain final answer

 Parallel divide-and-conquer pattern

11 COMP 322, Spring 2017 (V.Sarkar, M. Joyner)

Async and Finish Statements for Task
Creation and Termination (Pseudocode)

async S finish S

= Execute S, but wait until all
asyncs in S’s scope have
terminated.

Creates a new child task that
executes statement S

// T,(Parent task)
STMTO;
finish { //Begin finish
async {
STMT1; //T,(Child task)

}
STMT2 ; //Continue in T,

//Wait for T,

} //End finish
STMT3; //Continue in T,

12 COMP 322, Spring 2017 (V.Sarkar, M. Joyner) %\d

Two-way Parallel Array Sum
using async & finish constructs

Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
// Start of Task T1 (main program)
suml < 0; sum?2 < 0;
// Compute suml (lower half) and sum2 (upper half) in parallel.
finish{
async{
// Task T2
for i < 0 to X.length/2 — 1 do
L suml < suml + X[i];

b

async{
// Task T3
for i + X.length/2 to X.length — 1 do
L sum?2 < sum?2 + X [i];

};

};

// Task T1 waits for Tasks T2 and T3 to complete
// Continuation of Task T1

sum <— suml + sum?2;

return sum;

13 COMP 322, Spring 2017 (V.Sarkar, M. Joyner) @

Course Syllabus

» Fundamentals of Parallel Programming taught in three modules

1. Parallelism
2. Concurrency
3. Locality & Distribution

« Each module is subdivided into units, and each unit into topics

 Lecture and lecture handouts will introduce concepts using pseudocode notations

 Labs and programming assignments will be in Java 8

14

—Initially, we will use the Habanero-Java (HJ) library developed at Rice as a pedagogic
parallel programming model

- HJ-lib is a Java 8 library (no special compiler support needed)

- HJ-lib contains many features that are easier to use than standard Java threads/
tasks, and are also being added to future parallel programming models

—Later, we will learn parallel programming using standard Java libraries, and
combinations of Java libs + HJ-lib

N
4

COMP 322, Spring 2017 (V.Sarkar, M. Joyner)

Grade Policies

Course Rubric
 Homeworks (5) 40% (written + programming components)
- Weightage proportional to # weeks for homework

« Exams (2) 40% (scheduled midterm + scheduled final)
« Labs 10% (labs need to be checked off, as in COMP 215)
* Quizzes 5% (on-line quizzes on Canvas)

» Class Participation 5% (in-class Q&A, in-class worksheets, Piazza discussions)

Grading curve (we reserve the right to give higher grades than indicated below!)
>=90% = AorA+

>=80% = B, B+, or A-
>=70% = C+ or B-

others = C or below

N
4

15 COMP 322, Spring 2017 (V.Sarkar, M. Joyner)

Next Steps

« IMPORTANT:

—Send email to comp322-staff@rice.edu if you did NOT receive a
welcome email from us on Saturday, Jan 7th

—Bring your laptop to this week’s lab at 7pm on Wednesday (Rooms DH
1042, DH 1064)

—Watch videos for topics 1.2 & 1.3 for next lecture on Wednesday

« HW1 will be assigned on Jan 11th and be due on Jan 25th. (All
homeworks are due on Wednesdays.)

e Each quiz (to be taken online on Canvas) will be due on the Friday after
the unit is covered in class. The first quiz for Unit 1 (topics 1.1 - 1.5) is due
by Jan 27.

e See course web site for syllabus, work assignments, due dates, ...

- http:/lcomp322.rice.edu

16 COMP 322, Spring 2017 (V.Sarkar, M. Joyner) &,

OFFICE HOURS

 Regular office hour schedule can be found at Office
Hours link on course web site

« This week’s office hours are as follows
—TODAY (Jan 09), 2pm - 3pm, Duncan Hall 3092
—WEDNESDAY (Jan 11), 2pm - 3pm, Duncan Hall 3092
—FRIDAY (Jan 13), 2pm - 3pm, Duncan Hall 3092

« Send email to instructors (vsarkar@rice.edu,

mjoyner@rice.edu) if you need to meet some other time
this week

« And remember to post questions on Piazza!

17 COMP 322, Spring 2017 (V.Sarkar, M. Joyner)

