
COMP 322: Fundamentals of Parallel Programming

Lecture 28: Linearizability

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 28 April 2020

http://comp322.rice.edu

COMP 322, Spring 2020 (M.Joyner)

Worksheet #27 Solution: Use of trylock()
Rewrite the transferFunds() method below to use j.u.c. locks with calls to tryLock (see slide 4) instead of
synchronized.

Your goal is to write a correct implementation that never deadlocks, unlike the buggy version below (which can
deadlock).

Assume that each Account object already contains a reference to a ReentrantLock object dedicated to that object
e.g., from.lock() returns the lock for the from object. Sketch your answer using pseudocode.

1. public void transferFunds(Account from, Account to, int amount) {
2. while (true) {
3. // assume that trylock() does not throw an exception
4. boolean fromFlag = from.lock.trylock();
5. if (!fromFlag) continue;
6. boolean toFlag = to.lock.trylock();
7. if (!toFlag) { from.lock.unlock(); continue; }
8. try { from.subtractFromBalance(amount);
9. to.addToBalance(amount); break; }
10. finally { from.lock.unlock(); to.lock.unlock(); }
11. } // while
12. }

2

COMP 322, Spring 2020 (M.Joyner)

Linearizability: Correctness of Concurrent Objects

• A concurrent object is an object that can correctly handle methods invoked concurrently by different tasks
or threads
—e.g., AtomicInteger, ConcurrentHashMap, ConcurrentLinkedQueue, …

• For the discussion of linearizability, we will assume that the body of each method in a concurrent object is
itself sequential
—Assume that methods do not create threads or async tasks

• Consider a simple FIFO (First In, First Out) queue as a canonical example of a concurrent object
—Method q.enq(o) inserts object o at the tail of the queue

– Assume that there is unbounded space available for all enq() operations to succeed
—Method q.deq() removes and returns the item at the head of the queue.

– Throws EmptyException if the queue is empty.
• Without seeing the implementation of the FIFO queue, we can tell if an execution of calls to enq() and

deq() is correct or not, in a sequential program
• How can we tell if the execution is correct for a parallel program?

3

COMP 322, Spring 2020 (M.Joyner)

Linearization: Identifying a sequential order of concurrent
method calls

4

time

q.deq():x

q.enq(x)

 enq(x) deq() returns x

 isolated-wait/begin isolated-end

isolated-wait/begin isolated-end

“Linearizability” -- identify
order of enq() and deq()
calls that is consistent
with sequential execution

enq

deq

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Task T1

Task T2

http://www.elsevierdirect.com/companions/9780123705914/Lecture%2520Slides/03~Chapter_03.ppt

COMP 322, Spring 2020 (M.Joyner)

Informal Definition of Linearizability

• Assume that each method call takes effect “instantaneously” at some point in time between its invocation
and return.

• An execution (schedule) is linearizable if we can choose one set of instantaneous points that is consistent
with a sequential execution in which methods are executed at those points
• It’s okay if some other set of instantaneous points is not linearizable

• A concurrent object is linearizable if all its executions are linearizable
• Linearizability is a “black box” test based on the object’s behavior, not its internals

5

COMP 322, Spring 2020 (M.Joyner)

Example 1

6

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Task T1

COMP 322, Spring 2020 (M.Joyner)

Example 1 cont.

7

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Task T1

q.enq(y)

Task T2

COMP 322, Spring 2020 (M.Joyner)

Example 1 cont.

8

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Task T1

q.enq(y)

Task T2

q.deq():x

COMP 322, Spring 2020 (M.Joyner)

Example 1 cont.

9

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Task T1

q.enq(y)

Task T2

q.deq():x

q.deq():y

COMP 322, Spring 2020 (M.Joyner)

Example 1: is this execution linearizable?

10

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Task T1

q.enq(y)

Task T2

q.deq():x

q.deq():y

linearizable

(2)

(1)

(3)

(4)

COMP 322, Spring 2020 (M.Joyner)

Example 2: is this execution linearizable?

11

time

q.enq(x)

q.enq(y)

q.deq():yq.enq(x)

q.enq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Task T1

Task T2

not linearizable

http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

COMP 322, Spring 2020 (M.Joyner)

Example 3
Is this execution linearizable? How many possible linearizations does it have?

12

q.enq(x)

q.enq(y)

q.deq():y

q.deq():x

time

linearizable

(two possible linearizations)

COMP 322, Spring 2020 (M.Joyner)

Example 4: execution of an isolated implementation of FIFO
queue q

Is this a linearizable execution?

13

COMP 322, Spring 2020 (M.Joyner)

Example 5: execution of a concurrent implementation of a FIFO
queue q

Is this a linearizable execution?

14

COMP 322, Spring 2020 (M.Joyner)

Linearizability of Concurrent Objects (Summary)

Concurrent object
• A concurrent object is an object that can correctly handle methods invoked in parallel by different tasks or

threads
—Examples: Concurrent Queue, AtomicInteger

Linearizability
• Assume that each method call takes effect “instantaneously” at some distinct point in time between its

invocation and return.
• An execution is linearizable if we can choose instantaneous points that are consistent with a sequential

execution in which methods are executed at those points
• An object is linearizable if all its possible executions are linearizable

15

COMP 322, Spring 2020 (M.Joyner)

Announcements & Reminders

• The entire written + programming (Checkpoint #3) is due by Friday, April 3rd at 11:59pm

•Quiz for Unit 6 is due Monday, April 6th at 11:59pm

•Hw # 4 will be available today, due Wednesday, April 22nd by 11:59pm
—Checkpoint 1 due Monday, April 13th by 11:59pm

16

