COMP 322: Fundamentals of Parallel Programming

Lecture 28: Linearizability

Mack Joyner
mjoyner@rice.edu

http:/comp322.rice.edu

COMP 322 Lecture 28 April 2020 @

http://comp322.rice.edu

Worksheet #27 Solution: Use of trylock()

Rewrite the transferFunds() method below to use j.u.c. locks with calls to tryLock (see slide 4) instead of
synchronized.

Your goal is to write a correct implementation that never deadlocks, unlike the buggy version below (which can
deadlock).

Assume that each Account object already contains a reference to a ReentrantLock object dedicated to that object
e.g., from.lock() returns the lock for the from object. Sketch your answer using pseudocode.

public void transferFunds (Account from, Account to, 1nt amount) {
while (true) {
// assume that trylock() does not throw an exception
boolean fromFlag = from.lock.trylock();
1f (!fromFlag) continue;
boolean toFlag = to.lock.trylock();
if (!'toFlag) { from.lock.unlock(); continue; }
try { from.subtractFromBalance (amount) ;
to.addToBalance (amount) ; break; }
finally { from.lock.unlock(); to.lock.unlock(); }
} // while

2O 0N kR L =

—:O'

N
——

COMP 322, Spring 2020 (M.Joyner)

Linearizability: Correctness of Concurrent Objects

* A concurrent object is an object that can correctly handle methods invoked concurrently by different tasks
or threads

—e.0., Atomiclnteger, ConcurrentHashMap, ConcurrentLinkedQueue, ...

* For the discussion of linearizability, we will assume that the body of each method in a concurrent object is
itself sequential

—Assume that methods do not create threads or async tasks

o Consider a simple FIFO (First In, First Out) queue as a canonical example of a concurrent object
—Method g.enq(o) inserts object o at the tail of the queue
— Assume that there is unbounded space available for all enq() operations to succeed
—Method g.deq() removes and returns the item at the head of the queue.
— Throws EmptyException if the queue is empty.

 Without seeing the implementation of the FIFO queue, we can tell if an execution of calls to enq() and
deq() is correct or not, in a sequential program

* How can we tell if the execution is correct for a parallel program?

COMP 322, Spring 2020 (M.Joyner)

Linearization: Identifying a sequential order of concurrent
method calls

g.deq():x
isolated-wait/begin iIsolated-end

Task T1 @ @

d.enq(x)

. : h

Task T2 | “Llnearizability” -- identify

enq’ | | order of enq() and deq()

isolated-wait/begin | isolated-end | | c3l|s that is consistent
| | ’ | with sequential execution

/

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture®%20Slides/03~Chapter 03.ppt

COMP 322, Spring 2020 (M.Joyner)

http://www.elsevierdirect.com/companions/9780123705914/Lecture%2520Slides/03~Chapter_03.ppt

Informal Definition of Linearizability

» Assume that each method call takes effect “instantaneously” at some point in time between its invocation
and return.

* An execution (schedule) is linearizable if we can choose one set of instantaneous points that is consistent
with a sequential execution in which methods are executed at those points

* |t's okay If some other set of instantaneous points is not linearizable

A concurrent object is linearizable if all its executions are linearizable
o Linearizability is a "black box" test based on the object's behavior, not its internals

COMP 322, Spring 2020 (M.Joyner)

Example 1

Task T1

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

COMP 322, Spring 2020 (M.Joyner)

Example 1 cont.

Task T1

o

Task T2 ‘ |

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

COMP 322, Spring 2020 (M.Joyner)

Example 1 cont.

Task T1

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

COMP 322, Spring 2020 (M.Joyner)

Example 1 cont.

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

COMP 322, Spring 2020 (M.Joyner)

10

Example 1: is this execution linearizable?

Task T1 (1)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

COMP 322, Spring 2020 (M.Joyner)

11

Example 2: is this execution linearizable?

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_ 03.ppt

COMP 322, Spring 2020 (M.Joyner)

http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

12

Example 3

Is this execution linearizable? How many possible linearizations does it have?

COMP 322, Spring 2020 (M.Joyner)

Example 4: execution of an isolated implementation of FIFO
queue q

IS this a linearizable execution?

Time || Task A Task B
0 Invoke q.enq(x)
1 Work on q.enq(x)
2 Work on q.enq(x)
3 Return from q.enq(x)
4 Invoke q.enq(y)
D Work on q.enq(y)
6 Work on q.enq(y)
7 Return from q.enq(y)
8 Invoke q.deq()
9 Return x from gq.deq()

COMP 322, Spring 2020 (M.Joyner)

Example 5: execution of a concurrent implementation of a FIFO

queue g
s this a linearizable execution?
Time || Task A Task B
Invoke q.enq(x)
Work on q.enq(x) Invoke q.enq(y)
Work on q.enq(x) Return from q.enq(y)

Return from q.enq(x)
Invoke q.deq()

Return x from q.deq()

CU s W N = O

COMP 322, Spring 2020 (M.Joyner)

15

Linearizability of Concurrent Objects (Summary)

Concurrent object

* A concurrent object is an object that can correctly handle methods invoked in parallel by different tasks or
threads

—Examples: Concurrent Queue, Atomiclnteger

Linearizability

e Assume that each method call takes effect “instantaneously” at some distinct point in time between its
invocation and return.

e An execution is linearizable if we can choose instantaneous points that are consistent with a sequential
execution in which methods are executed at those points

* An objectis linearizable if all its possible executions are linearizable

COMP 322, Spring 2020 (M.Joyner)

16

Announcements & Reminders

* The entire written + programming (Checkpoint #3) is due by Friday, April 3rd at 11:59pm
* Quiz for Unit 6 is due Monday, April 6th at 11:59pm

« Hw # 4 will be available today, due Wednesday, April 22nd by 11:59pm
—Checkpoint 1 due Monday, April 13th by 11:59pm

COMP 322, Spring 2020 (M.Joyner)

