
COMP 322: Fundamentals of Parallel Programming 

Lecture 32: Introduction to the Message Passing Interface (MPI) 
cont.

Mack Joyner 
mjoyner@rice.edu 

http://comp322.rice.edu 

COMP 322                             Lecture 32              April 2020 

http://comp322.rice.edu


COMP 322, Spring 2020 (M.Joyner)

Worksheet #31: MPI send and receive
In the space below, indicate what values you expect the print statement in line 10 to output, assuming 
that the program is executed with two MPI processes. 

1. int a[], b[];
2. ...
3. if (MPI.COMM_WORLD.rank() == 0) {
4.    MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
5.    MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
6. }
7. else {
8.    Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 2);
9.    Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 1);
10.    System.out.println(“a = “ + a + “ ; b = “ + b);
11.}
12. …

Answer: Nothing!  The program will deadlock due to mismatched tags, with process 0 blocked at line 4, 
and process 1 blocked at line 8.

2



COMP 322, Spring 2020 (M.Joyner)

Basic Datatypes

• mpiJava defines 9 basic datatypes: these correspond to the 8 primitive types in the Java language, 
plus the MPI.OBJECT datatype that stands for an Object (or, more formally, a Java reference type). 
—MPI.OBJECT value can only be dereferenced on process where it was created 

• The basic datatypes are available as static fields of the MPI class.  They are:

3

ObjectMPI.OBJECT
doubleMPI.DOUBLE
floatMPI.FLOAT
longMPI.LONG
intMPI.INT
booleanMPI.BOOLEAN
shortMPI.SHORT
charMPI.CHAR
byteMPI.BYTE

Java typempiJava datatype



COMP 322, Spring 2020 (M.Joyner)

Outline of today’s lecture

• Blocking communications (contd) 

• Non-blocking communication

4



COMP 322, Spring 2020 (M.Joyner)

Communication Buffers

• Most of the communication operations take a sequence of parameters like 
        Object buf, int offset, int count, Datatype type 

• In the actual arguments passed to these methods, buf must be an array (or a run-
time exception will occur) 

5



COMP 322, Spring 2020 (M.Joyner)

Message Ordering in MPI

• FIFO ordering only guaranteed for same source, 
destination, data type, and tag 

• In HJ actors, FIFO ordering was guaranteed for same 
source and destination 
—Actor send is also “one-sided” and “non-

blocking” (unlike send/recv in MPI)

6

Source Destination

Source Destination
tag = 1

tag = 2
tag = 3



COMP 322, Spring 2020 (M.Joyner)

Layout of Buffer

• If type is a basic datatype (corresponding to a Java type), the message corresponds to a subset of the 
array buf, defined as follows: 

–In the case of a send buffer, the red boxes represent elements of the buf array that 
are actually sent. 

–In the case of a receive buffer, the red boxes represent elements where the 
incoming data may be written.

7

off
se

t +
 

co
un

t - 
1

0 1 off
se

t 
off

se
t +

1

… … …



COMP 322, Spring 2020 (M.Joyner)

Scenario #1
Consider: 

int a[], b[];
...
if (MPI.COMM_WORLD.rank() == 0) {
    MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
    MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
}
else {
    Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 2);
    Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 1);
}
…

Blocking semantics for Send() and Recv() can lead to a deadlock.

8



COMP 322, Spring 2020 (M.Joyner)

Approach #1 to Deadlock Avoidance: Reorder Send/Recv calls
We can break the circular wait in the worksheet by reordering Recv() calls to avoid deadlocks as 
follows: 

int a[], b[];
...
if (MPI.COMM_WORLD.rank() == 0) {
    MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
    MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
}
else {
    Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 1);
    Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 2);
}
...

9



COMP 322, Spring 2020 (M.Joyner)

Scenario #2
Consider the following piece of code, in which process i sends a message to process i + 1 (modulo 
the number of processes) and receives a message from process i - 1 (modulo the number of 
processes) 

1.int a[], b[];
2.. . .
3.int npes = MPI.COMM_WORLD.size();
4.int myrank = MPI.COMM_WORLD.rank()
5.MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, (myrank+1)%npes, 1);
6.MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, (myrank+npes-1)%npes, 1);

Question: Does this MPI code deadlock?

10



COMP 322, Spring 2020 (M.Joyner)

Approach #2 to Deadlock Avoidance: A combined Sendrecv call

• Since it is fairly common to want to simultaneously send one message while receiving another.  
• In mpiJava, the Sendrecv() method has the following signature: 

Status Sendrecv(Object sendBuf, int sendOffset, int sendCount, Datatype sendType, int dst, int sendTag,
                            Object recvBuf,  int recvOffset,  int recvCount,  Datatype recvType,  int src, int recvTag) ;

—More efficient than separate sends and receives 
—Can avoid deadlock  
—There is also a variant called Sendrecv_replace() which only specifies a single buffer

11



COMP 322, Spring 2020 (M.Joyner)

Using Sendrevc for Deadlock Avoidance in Scenario #2
Consider the following piece of code, in which process i sends a message to process i + 1 (modulo 
the number of processes) and receives a message from process i - 1 (modulo the number of 
processes) 

int a[], b[];
. . .
int npes = MPI.COMM_WORLD.size();
int myrank = MPI.COMM_WORLD.rank()
MPI.COMM_WORLD.Sendrecv(a, 0, 10, MPI.INT, (myrank+1)%npes, 1,
                    b, 0, 10, MPI.INT, (myrank+npes-1)%npes, 1);

... 

A combined Sendrecv() call avoids deadlock in this case

12



COMP 322, Spring 2020 (M.Joyner)

Outline of today’s lecture

• Blocking communications (contd) 

• Non-blocking communication

13



COMP 322, Spring 2020 (M.Joyner)

Latency in Blocking vs Nonblocking Communication

14

Blocking 
communication

Nonblocking 
communication 
(like an async or 
future task)



COMP 322, Spring 2020 (M.Joyner)

Non-Blocking Send and Receive Operations
• In order to overlap communication with computation, MPI provides a pair of functions for performing non-

blocking send and receive operations (“I” stands for “Immediate”) 

Request Isend(Object buf, int offset, int count, Datatype type, int dst, int tag) ; 
Request Irecv(Object buf, int offset, int count, Datatype type, int src, int tag) ; 

•Use Wait() to wait for operation to complete (like future get).  

Status Wait(Request request) 

• The Wait() operation is declared to return a Status object.  In the case of a non-blocking receive operation, 
this object has the same interpretation as the Status object returned by a blocking Recv() operation.

15



COMP 322, Spring 2020 (M.Joyner)

Simple Irecv() Example
The simplest way of waiting for completion of a single non-blocking operation is to use the instance 
method Wait() in the Request class, e.g: 

// Post a receive (like a “communication async”)
Request request = Irecv(intBuf, 0, n, MPI.INT, 
                        MPI.ANY_SOURCE,  0) ;
// Do some work while the receive is in progress
…
// Wait for message to arrive (like a future get)
Status status = request.Wait() ;
// Do something with data received in intBuf
…

16



COMP 322, Spring 2020 (M.Joyner)

Waitall() vs Waitany()
public static Status[] Waitall (Request [] array_of_request)

• Waitall()  blocks until all operations associated with the active requests have 
completed.   

• Returns an array of statuses for each of the requests. 
— Waitall() is a like a finish scope for all requests in the array 

 public static Status Waitany(Request [] array_of_request) 

• Waitany() blocks until one of the operations associated with the active requests has 
completed. 
—Source of nondeterminism

17



COMP 322, Spring 2020 (M.Joyner)

Announcements & Reminders

• Hw #4 (Checkpoint #1) is due today at 11:59pm 

•Quiz for Unit 7 is due Friday, April 17th at 11:59pm

18


