
COMP 322: Fundamentals of Parallel Programming

Lecture 36: Algorithms based on Parallel Prefix (Scan) operations

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 36 April 2020

http://comp322.rice.edu

COMP 322, Spring 2020 (M.Joyner)

Worksheet #35 Solution: Finding maximal index of goal in matrix

2

Below is a code fragment intended to find the maximal (largest) index of a goal value that
occurs multiple times in the input matrix. What logical error(s) are there in the code?

1. class AsyncFinishEurekaSearchMaxIndexOfGoal {
2. HjEureka eurekaFactory() {
3. comparator = (cur, newVal) -> { // cur is initially [-1, -1]

(cur.x==newVal.x) ? (newVal.y – cur.y) : (newVal.x – cur.x) }
4. return new MaximaEureka([-1, -1], comparator)
5. }
6. int[] doWork(matrix, goal) {
7. val eu = eurekaFactory()
8. finish (eu, () -> { // eureka registration
9. forasync (0, matrix.length - 1, (r) ->
10. procRow(matrix(r), r, goal));
11. });
12. return eu.get()
13. }
14. void procRow(array, r, goal) {
15. for (int c = 0; c < array.length(); c++)
16. check([r, c]) // terminate if comparator returns negative
17. if goal.match(array(c)) offer([r, c]) // updates cur in eureka
18. } }

for (int c = array.length() - 1; c >= 0; c--)

0 … 10 … 15 …
…
5 M
…
10 M M

The task terminates when
check([r,c]) is called and the
comparator has cur smaller than
[r,c]. We need to ensure the
iteration order in our code is
such that the comparator
returning negative means we
cannot produce an offer([r’,c’])
where [r’, c’] is greater than the
value of cur.

COMP 322, Spring 2020 (M.Joyner)

Beyond Sum/Reduce Operations - Prefix Sum (Scan)

Given input array A, compute output array X as follows:

• The above is an inclusive prefix sum since X[i] includes A[i]
• For an exclusive prefix sum, perform the summation for 0 <=j <i
• It is easy to see that inclusive prefix sums can be computed sequentially in O(n) time …
// Copy input array A into output array X

X = new int[A.length]; System.arraycopy(A,0,X,0,A.length);

// Update array X with prefix sums

for (int i=1 ; i < X.length ; i++) X[i] += X[i-1];

•… and so can exclusive prefix sums

3

COMP 322, Spring 2020 (M.Joyner)

Summary of Parallel Prefix Sum Algorithm (Recap - Lecture 12)

• Critical path length, CPL = O(log n)

• Total number of add operations, WORK = O(n)

•Optimal algorithm for P = O(n/log n) processors
—Adding more processors does not help

• Parallel Prefix Sum has several applications that go beyond computing the sum of array elements
•Parallel Prefix Sum can be used for any operation that is associative (need not be commutative)

—In contrast, finish accumulators required the operator to be both associative and commutative

4

COMP 322, Spring 2020 (M.Joyner)

Parallel Filter Operation (Recap)
[Credits: David Walker and Andrew W. Appel (Princeton), Dan Grossman (U. Washington)

Given an array input, produce an array output containing only elements such that f(elt)
is true, i.e., output = input.parallelStream.filter(f).toArray

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
 f: is elt > 10
 output [17, 11, 13, 19, 24]

Parallelizable?
—Finding elements for the output is easy
—But getting them in the right place seems hard

5

COMP 322, Spring 2020 (M.Joyner)

Parallel Prefix to the rescue (Recap)

1. Parallel map to compute a bit-vector for true elements (can use Java streams)
 input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
 bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector (not available in Java streams)
 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output (can use Java streams)
 output [17, 11, 13, 19, 24]
  

6

output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){
 if(bits[i]==1)
 output[bitsum[i]-1] = input[i];
}

COMP 322, Spring 2020 (M.Joyner)

Examples of Problems that can be solved using Parallel Prefix
Sum Operations

•Lexical comparisons of two strings of length O(n), to see which should appear first in a dictionary
•To implement radix sort
•To implement quicksort
•To perform lexical analysis. For example, to parse a program into tokens.
•To search for regular expressions. For example, to implement the UNIX grep program.
•. . .

7

COMP 322, Spring 2020 (M.Joyner)

Example Applications of Parallel Prefix Algorithm

•Prefix Max with Index of First Occurrence: given an input array A, output an
array X of objects such that X[i].max is the maximum of elements A[0…i] and
X[i].index contains the index of the first occurrence of X[i].max in A[0…i]

•Filter and Packing of Strings: given an input array A identify elements that satisfy
some desired property (e.g., uppercase), and pack them in a new output array.
(First create a 0/1 array for elements that satisfy the property, and then compute
prefix sums to identify locations of elements to be packed.)
—Useful for parallelizing partitioning step in Parallel Quicksort algorithm

8

COMP 322, Spring 2020 (M.Joyner)

Parallelizing Quicksort Example

•Step 1: pick pivot as median of three

9

8 1 4 9 0 3 5 2 7 6

• Steps 2: implement partition step as two filter/pack operations that store result in
a second array

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

• Step 3: Two recursive sorts in parallel

COMP 322, Spring 2020 (M.Joyner)

Use of Prefix Sums to Parallelize partition() in Quicksort
 partition(int[] A, int M, int N) {
 pivot = … ; // choose pivot from M..N
 Allocate temporary buffer[] with size N-M+1 elements
 forall (point [k] : [0:N-M]) { // parallel loop
 lt[k] = (A[M+k] < A[pivot] ? 1 : 0); // bit vector with < comparisons
 eq[k] = (A[M+k] == A[pivot] ? 1 : 0); // bit vector with = comparisons
 gt[k] = (A[M+k] > A[pivot] ? 1 : 0); // bit vector with > comparisons
 buffer[k] = A[M+k]; // Copy A[M..N] into buffer
 }
 // computePrefixSums() returns the prefix sum array and the total count of 1’s in the input array

 ltPs, ltCount = computePrefixSums(lt);
 eqPs, eqCount = computePrefixSums(eq);
 fgtPs, gtCount = computePrefixSums(gt);
 // Parallel move from buffer into A
 forall (point [k] : [0:N-M]) {
 if(lt[k]==1) A[M+ltPS[k]-1] = buffer[k];
 else if(eq[k]==1) A[M+ltCount+eqPS[k]-1] = buffer[k];
 else A[M+ltCount+eqCount+gtPS[k]-1] = buffer[k];
 }
 } // partition

10

COMP 322, Spring 2020 (M.Joyner)

Formalizing Parallel Prefix: Scan and Pre-scan operations

•The scan operation is an inclusive parallel prefix sum operation.

•The prescan operation is an exclusive parallel prefix sum operation. It takes a binary associative
operator ⊕ with identity I, and a vector of n elements, [a0, a1, ..., an−1], and returns the vector
[I,a0,(a0 ⊕a1),...,(a0 ⊕a1 ⊕…⊕an−2)].

•A prescan can be generated from a scan by shifting the vector right by one and inserting the
identity. Similarly, the scan can be generated from the prescan by shifting left, and inserting at the
end the sum of the last element of the prescan and the last element of the original vector.

•The scan operator was introduced in APL in the 1960’s, and has been popularized recently in
more modern languages, most notably the NESL project in CMU

11

COMP 322, Spring 2020 (M.Joyner)

Line-of-Sight Problem

•Problem Statement: given a terrain map in the form of a grid of altitudes and an observation point,
X, on the grid, find which points are visible along a ray originating at the observation point. Note
that a point on a ray is visible if and only if no other point between it and the observation point has
a greater vertical angle.

12

1.3 Line-of-Sight and Radix-Sort 45

procedure line-of-sight(altitude)

in parallel for each index i
angle[i] ← arctan(scale × (altitude[i] - altitude[0])/ i)

max-previous-angle ← max-prescan(angle)

in parallel for each index i
if (angle[i] > max-previous-angle[i])

result[i] ← "visible"

else

result[i] ← not "visible"

FIGURE 1.7

The line-of-sight algorithm for a single ray. The X marks the observation
point. The visible points are shaded. A point on the ray is visible if no
previous point has a greater angle.

in the angle vector (see Figure 1.7). A prescan using the operator maximum

(max-prescan) is then executed on the angle vector, which returns to each point
the maximum previous angle. To test for visibility each point only needs to
compare its angle to the result of the max-prescan. This can be generalized to
finding all visible points on the grid. For n points on a ray, the complexity of
the algorithm is the complexity of the scan, TS(n, p) = O(n/p + lg n) on an
EREW PRAM.

We now consider another example, a radix sort algorithm. The algorithm
loops over the bits of the keys, starting at the lowest bit, executing a split

•Define angle[i] = angle of point i on ray relative to observation point, X
(can be computed from altitudes of X and i)
•A max-prescan on angle[*] returns to each point the maximum previous

angle.
•Each point can compare its angle with its max-prescan value to

determine if it will be visible or not

COMP 322, Spring 2020 (M.Joyner)

Segmented Scan

Goal: Given a data vector and a flag vector as inputs, compute independent scans on segments of
the data vector specified by the flag vector.

13

COMP 322, Spring 2020 (M.Joyner)

Using Segmented Scan for Quicksort

14

COMP 322, Spring 2020 (M.Joyner)

Worksheet #36: Parallelizing the Split step in Radix Sort
The Radix Sort algorithm loops over the bits in the binary representation of the keys, starting at the
lowest bit, and executes a split operation for each bit as shown below. The split operation packs
the keys with a 0 in the corresponding bit to the bottom of a vector, and packs the keys with a 1 to
the top of the same vector. It maintains the order within both groups.

The sort works because each split operation sorts the keys with respect to the current bit and
maintains the sorted order of all the lower bits. Your task is to show how the split operation can be
performed in parallel using scan, reverse, not(Flags) operations, and to explain your answer.

15

1.A = [5 7 3 1 4 2 7 2]
2.A⟨0⟩ = [1 1 1 1 0 0 1 0] //lowest bit
3.A←split(A,A⟨0⟩) = [4 2 2 5 7 3 1 7]
4.A⟨1⟩ = [0 1 1 0 1 1 0 1] // middle bit
5.A←split(A,A⟨1⟩) = [4 5 1 2 2 7 3 7]
6.A⟨2⟩ = [1 1 0 0 0 1 0 1] // highest bit
7.A←split(A,A⟨2⟩) = [1 2 2 3 4 5 7 7]

