
COMP 322: Fundamentals of Parallel Programming

Lecture 1: Task Creation & Termination (async, finish)

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 1 January 2021

http://comp322.rice.edu

COMP 322, Spring 2021 (M.Joyner)2

Special Thanks to Vivek Sarkar!

COMP 322, Spring 2021 (M.Joyner)

Your Teaching Staff!

• TAs
—Elian Ahmar, Timothy Goh, Kelly Park, Tucker Reinhardt, Mantej Singh, Minh Vu, Thanh

Vu, Robert Walsh, Frederick Wang, Xincheng Wang, Yidi Wang

• Instructor
—Mack Joyner

3

COMP 322, Spring 2021 (M.Joyner)

Course Syllabus

•Fundamentals of Parallel Programming taught in three modules
1.Parallelism
2.Concurrency
3.Locality & Distribution

•Each module is subdivided into units, and each unit into topics
•Lecture and lecture handouts will introduce concepts using pseudocode notations
•Labs and programming assignments will be in Java 8 (not moving to Java 11 this semester)

—Initially, we will use the Habanero-Java (HJ) library developed at Rice as a pedagogic parallel programming
model
–HJ-lib is a Java 8 library (no special compiler support needed)
–HJ-lib contains many features that are easier to use than standard Java threads/tasks, and are also being

added to future parallel programming models
—Later, we will learn parallel programming using standard Java libraries, and combinations of Java libs + HJ-lib

4

COMP 322, Spring 2021 (M.Joyner)

Grade Policies

Course Rubric
• Homework (4) 40% (written + programming components)

•Weightage proportional to # weeks for homework
• Exams (2) 40% (scheduled midterm + scheduled final)
• Labs 10% (labs need to be submitted by Monday)
• Quizzes 5% (on-line quizzes on Canvas)
• Class Participation 5% (in-class worksheets)

5

COMP 322, Spring 2021 (M.Joyner)

What is Parallel Computing

•Parallel computing: using multiple processors in parallel to solve problems more quickly than with a single
processor and/or with less energy

•Example of a parallel computer
—An 8-core Symmetric Multi-Processor (SMP) consisting of four dual-core chip microprocessors (CMPs)

 Source: Figure 1.5 of Lin & Snyder book, Addison-Wesley, 2009

6

COMP 322, Spring 2021 (M.Joyner)

All Computers are Parallel Computers

7

COMP 322, Spring 2021 (M.Joyner)8

Dennard Scaling states that power for a fixed
chip area remains constant as transistors grow
smaller

Gordon Moore (co-founder of Intel) predicted in 1965 that the
transistor density of semiconductor chips would double roughly
every 1-2 years (Moore’s Law)
⇒ area of transistor halves every 1-2 years

⇒ feature size reduces by √2 every 1-2 years

Slide source: Jack Dongarra

COMP 322, Spring 2021 (M.Joyner)

Parallelism Saves Power (Simplified Analysis)

Maximum Frequency is capped by Voltage
! Power is proportional to (Frequency)3

Baseline example: single 1GHz core with power P

Option A: Increase clock frequency to 2GHz ! Power = 8P

Option B: Use 2 cores at 1 GHz each ! Power = 2P

• Option B delivers same performance as Option A with 4x less power … provided software can be
decomposed to run in parallel!

9

COMP 322, Spring 2021 (M.Joyner)

What is Parallel Programming

• Specification of operations that can be executed in parallel
• A parallel program is decomposed into sequential

subcomputations called tasks
•Parallel programming constructs define task creation,

termination, and interaction

10

BUS

Core 0 Core 1

L1 cache L1 cache

L2 Cache

Schematic of a dual-core
Processor

Task A Task B

COMP 322, Spring 2021 (M.Joyner)

Example of a Sequential Program: Computing sum of array elements

11

COMP 322

Spring 2015

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

0 Introduction

0.1 What is Parallel Programming?

Since the dawn of early digital computers and the Von Neumann computing model [6]1, programming
has been viewed as a sequential abstraction of computation. Sequential programming is a step-by-step
specification of each operation in a computation as a sequence — a program is a sequence of statements,
a loop is a sequence of iterations, an expression is a sequence of operations, and so on. The sequential
programming model has served the computing industry well for over six decades as the default model
for the vast majority of programming languages. Sequential programming has also simplified reasoning
about program execution because a sequential program always performs its operations in a predefined order.
However, in many respects, sequential programming can be considered “unnatural” because many application
domains modeled by software (e.g., physical systems, social networks) are inherently parallel rather than
sequential.

The concept of parallelism is often used to denote multiple events occurring side-by-side in space and time. In
Computer Science, we use it to denote simultaneous computation of operations on multiple processing units.
Thus, parallel programming is a specification of operations in a computation that can be executed in parallel
on di↵erent processing units. This course will focus on the fundamental concepts that underlie parallel
programming so as to provide you with the foundations needed to understand any parallel programming
model that you encounter in the future.

To introduce you to a concrete example of parallel programming, let us first consider the following sequential
algorithm for computing the sum of the elements of an array of numbers, X:

Algorithm 1: Sequential ArraySum

Input: Array of numbers, X.

Output: sum = sum of elements in array X.

sum 0;

for i 0 to X.length� 1 do

sum sum+X[i];

return sum;

This algorithm is simple to understand since it sums the elements of X sequentially from left to right.
However, we could have obtained the same algebraic result by summing the elements from right to left
instead. This over-specification of the ordering of operations in sequential programs has been classically
referred to as the Von Neumann bottleneck [1]. The left-to-right evaluation order in Algorithm 1 can be
seen in the computation graph shown in Figure 1. We will study computation graphs formally later in the
course. For now, think of each node or vertex (denoted by a circle) as an operation in the program and each
edge (denoted by an arrow) as an ordering constraint between the operations that it connects, due to the
flow of the output from the first operation to the input of the second operation. It is easy to see that the
computation graph in Figure 1 is sequential because the edges enforce a linear order among all nodes in the
graph.

How can we go about converting Algorithm 1 to a parallel program? The answer depends on the parallel
programming constructs that are available for our use. Let’s use the word, task, to denote a sequential
subcomputation of a parallel program. A task can be made as small or as large as needed. We can think
of the start of program execution as a single root task. We now informally introduce two constructs, async
and finish2:

• The statement “async hstmt1i” causes the parent task to create a new child task to execute the body of

1
These lecture notes include citation such as [6] as references for optional further reading.

2
These constructs have some similarities to the “fork” and “join” constructs available in many languages, but there are

notable di↵erences as well, as you will learn later in the course.

2 of 13

Observations:

• The decision to sum up the elements from left to right was arbitrary

• The computation graph shows that all operations must be executed
sequentially

COMP 322, Spring 2021 (M.Joyner)

Async and Finish Statements for Task Creation and Termination
async S

• Creates a new child task
that executes statement S

12

finish S
" Execute S, but wait until
all asyncs in S’s scope
have terminated.

// T0(Parent task)
STMT0;
finish { //Begin finish
 async {
 STMT1; //T1(Child task)
 }
 STMT2; //Continue in T0

} //End finish (wait for T1)
STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

COMP 322, Spring 2021 (M.Joyner)

Example of a Sequential Program: Computing sum of array elements

13

COMP 322

Spring 2015

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

0 Introduction

0.1 What is Parallel Programming?

Since the dawn of early digital computers and the Von Neumann computing model [6]1, programming
has been viewed as a sequential abstraction of computation. Sequential programming is a step-by-step
specification of each operation in a computation as a sequence — a program is a sequence of statements,
a loop is a sequence of iterations, an expression is a sequence of operations, and so on. The sequential
programming model has served the computing industry well for over six decades as the default model
for the vast majority of programming languages. Sequential programming has also simplified reasoning
about program execution because a sequential program always performs its operations in a predefined order.
However, in many respects, sequential programming can be considered “unnatural” because many application
domains modeled by software (e.g., physical systems, social networks) are inherently parallel rather than
sequential.

The concept of parallelism is often used to denote multiple events occurring side-by-side in space and time. In
Computer Science, we use it to denote simultaneous computation of operations on multiple processing units.
Thus, parallel programming is a specification of operations in a computation that can be executed in parallel
on di↵erent processing units. This course will focus on the fundamental concepts that underlie parallel
programming so as to provide you with the foundations needed to understand any parallel programming
model that you encounter in the future.

To introduce you to a concrete example of parallel programming, let us first consider the following sequential
algorithm for computing the sum of the elements of an array of numbers, X:

Algorithm 1: Sequential ArraySum

Input: Array of numbers, X.

Output: sum = sum of elements in array X.

sum 0;

for i 0 to X.length� 1 do

sum sum+X[i];

return sum;

This algorithm is simple to understand since it sums the elements of X sequentially from left to right.
However, we could have obtained the same algebraic result by summing the elements from right to left
instead. This over-specification of the ordering of operations in sequential programs has been classically
referred to as the Von Neumann bottleneck [1]. The left-to-right evaluation order in Algorithm 1 can be
seen in the computation graph shown in Figure 1. We will study computation graphs formally later in the
course. For now, think of each node or vertex (denoted by a circle) as an operation in the program and each
edge (denoted by an arrow) as an ordering constraint between the operations that it connects, due to the
flow of the output from the first operation to the input of the second operation. It is easy to see that the
computation graph in Figure 1 is sequential because the edges enforce a linear order among all nodes in the
graph.

How can we go about converting Algorithm 1 to a parallel program? The answer depends on the parallel
programming constructs that are available for our use. Let’s use the word, task, to denote a sequential
subcomputation of a parallel program. A task can be made as small or as large as needed. We can think
of the start of program execution as a single root task. We now informally introduce two constructs, async
and finish2:

• The statement “async hstmt1i” causes the parent task to create a new child task to execute the body of

1
These lecture notes include citation such as [6] as references for optional further reading.

2
These constructs have some similarities to the “fork” and “join” constructs available in many languages, but there are

notable di↵erences as well, as you will learn later in the course.

2 of 13

Can you insert an async/finish anywhere to improve performance?

COMP 322, Spring 2021 (M.Joyner)

Parallelization Strategy for 2 cores (Two-way Parallel Array Sum)

Basic idea:
• Decompose problem into two tasks for partial sums
• Combine results to obtain final answer
• Parallel divide-and-conquer pattern

Task 0: Compute sum
of lower half of array

Task 1: Compute sum
of upper half of array

+"

14

Compute total sum

COMP 322, Spring 2021 (M.Joyner)

Two-way Parallel Array Sum using async & finish constructs

15

COMP 322

Spring 2015

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

+
+

+

X[0]

X[1]

X[2]

…

0

Figure 1: Computation graph for Algorithm 1 (Sequential ArraySum)

the async, hstmt1i, asynchronously (i.e., before, after, or in parallel) with the remainder of the parent
task.

• The statement “finish hstmt2i” causes the parent task to execute the body of the finish, hstmt2i, and
then wait until all async tasks created within hstmt2i have completed.

The notation, hstmti, refers to any legal program statement e.g., if-then-else, for-loop, method call, or a block
enclosed in { } braces. Async and finish statements may be arbitrarily nested, so they can be contained in
hstmti too. (The use of angle brackets in “hstmti” follows a standard notational convention to denote units of
a program. They are unrelated to the < and > comparison operators used in many programming languages.)

We can use async and finish to obtain a simple parallel program for computing an array sum as shown in
Algorithm 2. The graph structure for Algorithm 2 is shown in Figure 2. Note that it di↵ers from Figure 1
since there is no edge or sequence of edges connecting Tasks T2 and T3. This indicates that tasks T2 and T3
can execute in parallel with each other; for example, if your computer has two processor cores, T2 and T3
can be executed on two di↵erent processors at the same time. We will see much richer examples of parallel
programs using async, finish and other constructs during the course.

Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.

Output: sum = sum of elements in array X.

// Start of Task T1 (main program)
sum1 0; sum2 0;

// Compute sum1 (lower half) and sum2 (upper half) in parallel.
finish{

async{
// Task T2
for i 0 to X.length/2� 1 do

sum1 sum1 +X[i];

};
async{

// Task T3
for i X.length/2 to X.length� 1 do

sum2 sum2 +X[i];

};
};
// Task T1 waits for Tasks T2 and T3 to complete
// Continuation of Task T1
sum sum1 + sum2;

return sum;

3 of 13

COMP 322, Spring 2021 (M.Joyner)

Next Steps

•IMPORTANT:
—This week’s lab is at 1:30pm on Tuesday or 4:50pm on Thursday (Zoom)
—Watch videos for topics 1.2 & 1.3 for next lecture on Wednesday

•HW1 will be assigned on Jan 27th and be due on Feb 10th. (Homework is normally due on
Wednesdays.)

• Each quiz (to be taken online on Canvas) will be due on the Friday after the unit is covered in
class. The first quiz for Unit 1 (topics 1.1 - 1.5) is due by Feb 5th.

• See course web site for syllabus, work assignments, due dates, …
• http://comp322.rice.edu

16

https://canvas.rice.edu/courses/1844/pages/videos-for-unit-1-task-level-parallelism?module_item_id=44098
http://comp322.rice.edu

COMP 322, Spring 2021 (M.Joyner)

Office Hours

•Regular office hour schedule can be found at Office Hours link on course web site
•Send email to instructor (mjoyner@rice.edu) if you need to meet some other time this week
•And remember to post and answer questions on Piazza!

17

https://wiki.rice.edu/confluence/display/PARPROG/322OfficeHours
mailto:mjoyner@rice.edu?subject=

Honor Code Policy for Worksheets: You are free to discuss all aspects of in-class worksheets with your other classmates, the teaching assistants
and the professor during the class. You can work in a group and write down the solution that you obtained as a group. If you work on the
worksheet outside of class (e.g., due to an absence), then it must be entirely your individual effort, without discussion with any other students. If
you use any material from external sources, you must provide proper attribution. You should submit the worksheet in Canvas.

1) Parallelizing your weekday/weekend tasks!
Consider the sequential list of weekday/weekend tasks below. Assume that you have an unbounded number of helpers to help you with your
chores and tasks. Insert async and finish pseudocode annotations to maximize parallelism, while ensuring that the parallel version has no
unintended/undesirable outcomes. Make any reasonable assumptions e.g., you only have one fridge, you need to watch videos in order, you have
access to multiple washers & dryers, you can reorder statements so long as you don’t change the outcome, etc.

Watch COMP 322 video for topic 1.2 by 1:30pm on Wednesday

Watch COMP 322 video for topic 1.3 by 1:30pm on Wednesday

Make your bed

Clean out your fridge

Buy food supplies and store them in fridge

Run load 1 in washer

Run load 2 in washer

Run load 1 in dryer

Run load 2 in dryer

Call your family

Post on Facebook that you’re done with all your tasks!

COMP 322, Spring 2021 (M.Joyner)

Worksheet #1

18

