COMP 322: Fundamentals of Parallel Programming

Lecture 3: Multiprocessor Scheduling

Mack Joyner mjoyner@rice.edu

http://comp322.rice.edu

One Possible Solution to Worksheet 2 (Reverse Engineering a Computation Graph)

Observations:

- Any node with out-degree > 1 must be an async (must have an outgoing spawn edge)
- Any node with in-degree > 1 must be an end-finish (must have an incoming join edge
- Adding or removing transitive edges does not impact ordering constraints

```
1.A();
2.finish { // F1
3. async D();
4. B();
5. E();
6. finish { // F2
7. async H();
8. F();
9. } // F2
10. G();
11.} // F1
12.C();
```


Ordering Constraints and Transitive Edges in a Computation Graph

- The primary purpose of a computation graph is to determine if an ordering constraint exists between two steps (nodes)
 - —Observation: Node A must be performed before node B if there is a path of directed edges from A and B
- An edge, $X \rightarrow Y$, in a computation graph is said to be *transitive* if there exists a path of directed edges from X to Y that does not include the $X \rightarrow Y$ edge
 - —Observation: Adding or removing a transitive edge does not change the ordering constraints in a computation graph

Ideal Parallelism (Recap)

- Define ideal parallelism of Computation G Graph as the ratio, WORK(G)/CPL(G)
- Ideal Parallelism only depends on the computation graph, and is the speedup that you can obtain with an unbounded number of processors

Example:

WORK(G) = 26 CPL(G) = 11

Ideal Parallelism = $WORK(G)/CPL(G) = 26/11 \sim 2.36$

What is the critical path length of this parallel computation?

```
1. finish { // F1
2. async A; // Boil water & pasta (10)
3. finish { // F2
4. async B1; // Chop veggies (5)
5. async B2; // Brown meat (10)
6. } // F2
7. B3; // Make pasta sauce (5)
8. } // F1
```

Step B1

Step B2

Step A

Step B3

Scheduling of a Computation Graph on a fixed number of processors

Start time	Proc 1	Proc 2	Proc 3
0	A		
1	В		
2	С	N	
3	D	N	I
4	D	N	J
5	D	N	K
6	D	Q	L
7	E	R	M
8	F	R	0
9	G	R	Р
10	Н		
11	Completion time = 11		

do better?

Scheduling of a Computation Graph on a fixed number of processors

- Assume that node N takes TIME(N) regardless of which processor it executes on, and that there is no overhead for creating parallel tasks
- A schedule specifies the following for each node

```
—START(N) = start time
```

--PROC(N) = index of processor in range 1...P

such that

- —START(i) + TIME(i) <= START(j), for all CG edges from i to j (Precedence constraint)
- —A node occupies consecutive time slots in a processor (Non-preemption constraint)
- —All nodes assigned to the same processor occupy distinct time slots (Resource constraint)

Greedy Schedule

- A greedy schedule is one that never forces a processor to be idle when one or more nodes are ready for execution
- A node is ready for execution if all its predecessors have been executed
- Observations

```
T_1 = WORK(G), for all greedy schedules
```

- $-T_{\infty}$ = CPL(G), for all greedy schedules
- $T_P(S)$ = execution time of schedule S for computation graph G on P processors

Lower Bounds on Execution Time of Schedules

- Let T_P = execution time of a schedule for computation graph G on P processors
 - —T_P can be different for different schedules, for same values of G and P
- Lower bounds for all greedy schedules
 - —Capacity bound: $T_P \ge WORK(G)/P$
 - —Critical path bound: $T_P \ge CPL(G)$
- Putting them together

```
-T_P \ge \max(WORK(G)/P, CPL(G))
```


Upper Bound on Execution Time of Greedy Schedules

Theorem [Graham '66]. Any greedy scheduler achieves

$$T_P \leq WORK(G)/P + CPL(G)$$

Proof sketch:

Define a time step to be complete if P processors are scheduled at that time, or incomplete otherwise

complete time steps ≤ WORK(G)/P

incomplete time steps ≤ CPL(G)

Start time	Proc 1	Proc 2	Proc 3
0	A		
1	В		
2	C	2	
3	D	N	I
4	D	N	J
5	D	N	K
6	D	Q	L
7	E	R	W
8	F	R	0
9	G	R	Р
10	Н		
11			

Bounding the Performance of Greedy Schedulers

Combine lower and upper bounds to get

 $max(WORK(G)/P, CPL(G)) \le T_P \le WORK(G)/P + CPL(G)$

Corollary: Any greedy scheduler achieves execution time T_P that is within a factor of 2 of the optimal time (since max(a,b) and (a+b) are within a factor of 2 of each other, for any $a \ge 0$, $b \ge 0$).

Announcements & Reminders

- No lab next week
- Lab #1 needs to get checked off or committed and pushed by 11:59pm
- HW #1 due on Wednesday, Feb 10th at 11:59pm
- IMPORTANT: Watch video & read handout for topic 1.5 for lecture on Monday

