
COMP 322: Fundamentals of Parallel Programming

Lecture 18: Abstract vs Real Performance - An “under the hood” look
at HJlib

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 18 March 2021

http://comp322.rice.edu

COMP 322, Spring 2021 (M.Joyner)

Compute the WORK and CPL values for the program shown below. How would they be different if the signal() statement was removed?
(Hint: draw a computation graph as in slide 11)

WORK = 204, CPL = 102. If the signal() is removed, CPL = 202.

Worksheet #17:
Critical Path Length for Computation with Signal Statement

1.finish(() -> {
2. final HjPhaser ph = newPhaser(SIG_WAIT);
3. asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T1
4. A(0); doWork(1); // Shared work in phase 0
5. signal();
6. B(0); doWork(100); // Local work in phase 0
7. next(); // Wait for T2 to complete shared work in phase 0
8. C(0); doWork(1);
9. });
10. asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T2
11. A(1); doWork(1); // Shared work in phase 0
12. next(); // Wait for T1 to complete shared work in phase 0
13. C(1); doWork(1);
14. D(1); doWork(100); // Local work in phase 0
15. });
16.}); // finish

2

COMP 322, Spring 2021 (M.Joyner)

HJ-lib Compilation and Execution Environment

3

Foo.java

Java compiler
Java compiler translates Foo.java to
Foo.class, along with calls to HJ-lib with
lambda parameters (async, finish, future,
etc)

Foo.class

HJ-lib source program is a standard Java 11 program

HJ-lib Runtime
Environment =
Java Runtime
Environment +
HJ-lib libraries

HJ Abstract Performance Metrics
(enabled by appropriate options)

HJ-lib Program Output

javac Foo.java

java Foo

HJ runtime initializes m worker threads
(value of m depends on options or default
value)

Java 11 IDE

All the “magic” happens here!

COMP 322, Spring 2021 (M.Joyner)

Looking under the hood - let’s start with the hardware

4

Main Memory (DRAM)

COMP 322, Spring 2021 (M.Joyner)

How does a process run on a single core?

5

(e.g., Java application A) (e.g., Java application B)

Context switches between two processes can be very expensive!
Source: COMP 321 lecture on Exceptional Control Flow (Alan Cox)

COMP 322, Spring 2021 (M.Joyner)

What happens when executing a Java program

•A Java program executes in a single Java Virtual Machine (JVM)
process with multiple threads

•Threads associated with a single process can share the same data

•Java main program starts with a single thread (T1), but can create
additional threads (T2, T3, T4, T5) via library calls

•Java threads may execute concurrently on different cores, or may be
context-switched on the same core

6

T1!

T2!
T4!

T5! T3!

shared code, data!
and process context!

Figure source: COMP 321 lecture on Concurrency (Alan Cox)

Java application with five threads —-
T1, T2, T3, T4, T5 — all of which can
access a common set of shared objects

COMP 322, Spring 2021 (M.Joyner)

Thread-level Context Switching on the same processor core

•Thread context switch is cheaper than a process context switch, but is still
expensive (just not “very” expensive!)

• It would be ideal to just execute one thread per core (or hardware thread context)
to avoid context switches

 Figure source: COMP 321 lecture on Concurrency (Alan Cox)

7

Thread 1!
(main thread)!

Thread 2!
(peer thread)!

Time!
thread context switch!

thread context switch!

COMP 322, Spring 2021 (M.Joyner)

Now, what happens is a task-parallel Java program
(e.g., HJ-lib, Java Fork, etc.)

•HJ-lib runtime creates a small number of worker threads, typically one per core

•Workers push new tasks and “continuations” into a logical work queue

•Workers pull task/continuation work items from logical work queue when they are idle
(remember greedy scheduling?)

8

HJ-Lib Tasks & Continuations

Worker threads

Operating System

Hardware cores

Ready
Tasks

COMP 322, Spring 2021 (M.Joyner)

Task-Parallel Model: Checkout Counter Analogy

• Think of each checkout counter as a processor core

9

Image sources: http://www.deviantart.com/art/Randomness-20-178737664,
http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

COMP 322, Spring 2021 (M.Joyner)

Task-Parallel Model: Checkout Counter Analogy

• Think of each checkout counter as a processor core

• And of customers as tasks

10

Image sources: http://www.deviantart.com/art/Randomness-20-178737664,
http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

COMP 322, Spring 2021 (M.Joyner)

All is well until a task blocks …

•A blocked task/customer can hold up the entire line
•What happens if each checkout counter has a blocked customer?

11

. . .

source: http://viper-x27.deviantart.com/art/Checkout-Lane-Guest-Comic-161795346

http://viper-x27.deviantart.com/art/Checkout-Lane-Guest-Comic-161795346

COMP 322, Spring 2021 (M.Joyner)

Approach 1: Create more worker threads
(as in HJ-Lib’s Blocking Runtime)

•Creating too many worker threads can exhaust system resources
(OutOfMemoryError)

•Leads to context-switch overheads when blocked worker threads get unblocked

12

source: http://www.deviantart.com/art/Randomness-5-90424754

COMP 322, Spring 2021 (M.Joyner)

Blocking Runtime (contd)

•Assume that five tasks (A1 … A5) are registered on a barrier
•Q: What happens if four tasks (say, A1 … A4) executing on workers w1 … w4 all block at the

same barrier?

•
13

next() barrier operation

COMP 322, Spring 2021 (M.Joyner)

Blocking Runtime (contd)

•Assume that five tasks (A1 … A5) are registered on a barrier
•Q: What happens if four tasks (say, A1 … A4) executing on workers w1 … w4 all block at

the same barrier?
•A: Deadlock! (All four tasks will wait for task A5 to enter the barrier.)
•Blocking Runtime’s solution to avoid deadlock: keep task blocked on worker thread, and

create a new worker thread when task blocks

14

next() barrier operation

To avoid deadlock,
a blocked worker (e.g., w4)

creates a new worker thread,

COMP 322, Spring 2021 (M.Joyner)

Blocking Runtime (contd)

•Examples of blocking operations
—End of finish
—Future get
—Barrier next

•Approach: Block underlying worker thread when task performs a blocking
operation, and launch an additional worker thread
•Too many blocking operations can result in exceptions and/or poor performance,

e.g.,
—java.lang.IllegalStateException: Error in executing
blocked code! [89 blocked threads]

—Maximum number of worker threads can be configured if needed
—HjSystemProperty.maxThreads.set(100);

15

COMP 322, Spring 2021 (M.Joyner)

Approach 2: Suspend task continuations at blocking points
(as in HJ-Lib’s Cooperative Runtime)

•Upon a blocking operation, the currently executing tasks suspends itself and
yields control back to the worker

•Task’s continuation is stored in the suspended queue and added back into the
ready queue when it is unblocked

•Pro: No overhead of creating additional worker threads
•Con: Need to create continuations (enabled by -javaagent option)

16

C
he

ck
ou

t
co

un
te

r

Suspended
Queue

Ready
Queue

Executing
Task

COMP 322, Spring 2021 (M.Joyner)

Continuations

• A continuation can be a point immediately following a blocking operation, such as an end-
finish, future get(), barrier/phaser next(), etc.

•Continuations are also referred to as task-switching points
—Program points at which a worker may switch execution between different tasks (depends on

scheduling policy)
1.finish { // F1
2. async A1;
3. finish { // F2
4. async A3;
5. async A4;
6. }
7. S5;
8.}

17

Continuations

COMP 322, Spring 2021 (M.Joyner)

Cooperative Scheduling (view from a single worker)

18

…

suspend

suspend
…

resume
suspend/complete

Useful work
for some

other task on
same worker

thread

tim
e

(in
cr

ea
se

s
do

w
nw

ar
ds

)

Task-1 Task-1

Task-2

Cooperative runtime
automatically

creates
continuations at

suspend points via

COMP 322, Spring 2021 (M.Joyner)

HJ-lib’s Cooperative Runtime (contd)

Any operation that contributes to unblocking a task can be viewed as an event e.g., task
termination in finish, return from a future, signal on barrier, put on a data-driven-future, …

19

…

task
task
task

task
task

…

EDC EDC

…

Ready/Resumed Task
Queues

Suspended Tasks
registered with “Event-

Driven Controls (EDCs)”

Worker Threads Synchronization objects
that use EDCs

EDC

{ }task
{ }task

{ }task

COMP 322, Spring 2021 (M.Joyner)

Why are Data-Driven Tasks (DDTs) more efficient than Futures?

• Consumer task blocks on get() for each future that it reads, whereas async-
await does not start execution till all Data-Driven Futures (DDFs) are available
—An “asyncAwait” statement does not block the worker, unlike a future.get()
—No need to create a continuation for asyncAwait; a data-driven task is directly
placed on the Suspended queue by default

•Therefore, DDTs can be executed on a Blocking Runtime without the need to
create additional worker threads, or on a Cooperative Runtime without the need
to create continuations

20

COMP 322, Spring 2021 (M.Joyner)

Summary: Abstract vs Real Performance in HJ-Lib

•Abstract Performance
—Abstract metrics focus on operation counts
for WORK and CPL, regardless of actual
execution time

•Real Performance
—HJlib uses ForkJoinPool implementation of
Java Executor interface with Blocking or
Cooperative Runtime (default)

21

COMP 322, Spring 2021 (M.Joyner)

Announcements & Reminders

•Quiz #3 is due today at 11:59pm

•No lab this week

•Quiz #4 is now due Sunday, March 21st at 11:59pm

•HW #3 CP 1 is due Wednesday, Mar 24th at 11:59pm

•Watch the topic 5.1, 5.2, 5.6 videos for the next lecture

22

COMP 322, Spring 2021 (M.Joyner)

Worksheet #18: Cooperative vs Blocking Runtime Schedulers
Assume that creating an async causes the task to be pushed
into the work queue for execution by any available worker
thread.

Fill in the following table for the program shown on the right by
adding the appropriate number of threads required to execute
the program. For the minimum or maximum numbers, your
answer must represent a schedule where at some point during
the execution all threads are busy executing a task or blocked
on some synchronization constraint.

23

10. finish {
11. async { S1; }
12. finish {
13. async {
14. finish {
15. async { S2; }
16. S3;
17. }
18. S4;
19. }
20. async {
21. async { S5; }
22. S6;
23. }
24. S7;
25. }
26. S8;
27. }

Minimum
number of

threads
Maximum
number of

threads

Cooperative
Runtime

Blocking
Runtime

