
COMP 322: Fundamentals of Parallel Programming 

Lecture 36: Review of Lectures 19-33 (Scope of Exam 2)

Mack Joyner 
mjoyner@rice.edu 

http://comp322.rice.edu 

COMP 322                             Lecture 36              April 2021 

http://comp322.rice.edu


COMP 322, Spring 2021 (M.Joyner)

Announcements & Reminders

• Hw 4 - entire written + programming (Checkpoint #2) is due today at 11:59pm 

•The  Final exam (in Canvas) is Tuesday, May 11th from at 9am - 12pm (CST).    
— You may reschedule the exam time if your current time zone is not CST 
— Exam is open notes, slides, handouts, canvas videos 

2



COMP 322, Spring 2021 (M.Joyner)

HJ isolated construct 
(Lecture 19 - Start of Module 2, Concurrency) 

isolated (() -> <body> ); 

• Isolated construct identifies a critical section 

• Two tasks executing isolated constructs are guaranteed to perform them in mutual exclusion 
!Isolation guarantee applies to (isolated, isolated) pairs of constructs, not to (isolated, non-isolated) pairs of 

constructs 

• Isolated constructs may be nested 

— An inner isolated construct is redundant 

• Blocking parallel constructs are forbidden inside isolated constructs 

—Isolated constructs must not contain any parallel construct that performs a blocking operation e.g., finish, 
future get, next 

—Non-blocking async operations are permitted, but isolation guarantee only applies to creation of async, not to 
its execution 

• Isolated constructs can never cause a deadlock 

— Other techniques used to enforce mutual exclusion (e.g., locks — which we will learn later) can lead to a 
deadlock, if used incorrectly

3



COMP 322, Spring 2021 (M.Joyner)

Object-based isolation

isolated(obj1, obj2, …, () -> <body>) 

• In this case, programmer specifies list of objects for which isolation is required 

• Mutual exclusion is only guaranteed for instances of isolated constructs that 
have a common object in their object lists  

—Serialization edges are only added between isolated steps with at least one 
common object (non-empty intersection of object lists) 

—Standard isolated is equivalent to “isolated(*)” by default i.e., isolation across 
all objects 

• Inner isolated constructs are redundant — they are not allowed to “add” new 
objects

4



COMP 322, Spring 2021 (M.Joyner)

1. class V  { 
2.   V [] neighbors; // adjacency list for input graph 
3.   V parent; // output value of parent in spanning tree 
4.   boolean makeParent(final V n) { 
5.     return isolatedWithReturn(this, () -> { 
6.       if (parent == null) { parent = n; return true; } 
7.       else return false; // return true if n became parent 
8.     }); 
9.   } // makeParent 
10.  void compute() { 
11.    for (int i=0; i<neighbors.length; i++) {  
12.      final V child = neighbors[i];   
13.      if (child.makeParent(this)) 
14.        async(() -> { child.compute(); }); 
15.     }  
16.  } // compute 
17.} // class V 
18.. . . 
19.root.parent = root; // Use self-cycle to identify root 
20.finish(() -> { root.compute(); }); 
21.. . .

Parallel Spanning Tree Algorithm using  
object-based isolated construct

5



COMP 322, Spring 2021 (M.Joyner)

Worksheet #19 Abstract Metrics with Object-based Isolated Constructs

1.    finish(() -> {  
2.         // Assume X is an array of distinct objects 
3.         for (int i = 0; i < 5; i++) { 
4.           async(() -> { 
5.             doWork(2); 
6.             isolated(X[i], X[i+1],  
7.                      () -> { doWork(1); }); 
8.             doWork(2); 
9.           }); // async 
10.        } // for 
11.    }); // finish

6

Compute the WORK and CPL metrics for this program with an object-based isolated construct.  Indicate if your 
answer depends on the execution order of isolated constructs.  Since there may be multiple possible 
computation graphs (based on serialization edges), try and pick the worst-case CPL value across all 
computation graphs.

Answer: WORK = 25, CPL = 7.



COMP 322, Spring 2021 (M.Joyner)

java.util.concurrent.AtomicInteger methods and their equivalent isolated constructs 
(pseudocode)

7

Methods in java.util.concurrent.AtomicInteger class and their equivalent HJ isolated statements.  
Variable v refers to an AtomicInteger object in column 2 and to a standard non-atomic Java object in 
column 3.  val refers to a field of type int.



COMP 322, Spring 2021 (M.Joyner)

1. class V  { 
2.   V [] neighbors; // adjacency list for input graph 
3.   AtomicReference<V> parent; // output value of parent in spanning tree 
4.   boolean makeParent(final V n) { 
5.     // compareAndSet() is a more efficient implementation of 
6.     // object-based isolation 
7.     return parent.compareAndSet(null, n); 
8.   } // makeParent 
9.   void compute() { 
10.    for (int i=0; i<neighbors.length; i++) {  
11.      final V child = neighbors[i];   
12.      if (child.makeParent(this)) 
13.        async(() -> { child.compute(); }); 
14.     }  
15.  } // compute 
16.} // class V 
17.. . . 
18.root.parent = root; // Use self-cycle to identify root 
19.finish(() -> { root.compute(); }); 
20.. . .

Worksheet #20: Atomic Variables represent a special (and more efficient) 
case of object-based isolation

8



COMP 322, Spring 2021 (M.Joyner)

Read-Write Object-based isolation in HJ 
isolated(readMode(obj1),writeMode(obj2), …, () -> <body> ); 

• Programmer specifies list of objects as well as their read-write modes for which isolation is required  
• Not specifying a mode is the same as specifying a write mode (default mode = read + write) 
• Mutual exclusion is only guaranteed for instances of isolated statements that have a non-empty intersection in their object lists such 

that one of the accesses is in writeMode 
• Sorted List example 
1.  public boolean contains(Object object) { 
2.     return isolatedWithReturn( readMode(this), () -> { 
3.       Entry pred, curr; 
4.       ... 
5.       return (key == curr.key); 
6.    }); 
7.  } 
8.    
9.   public int add(Object object) { 
10.   return isolatedWithReturn( writeMode(this), () -> { 
11.     Entry pred, curr; 
12.     ... 
13.     if (...) return 1; else return 0; 
14.   }); 
15. }

9



COMP 322, Spring 2021 (M.Joyner)

Actor Life Cycle (Lecture 21)
Actor states 
" New: Actor has been created 

—e.g., email account has been created, messages can be received 

" Started: Actor can process messages 
—e.g., email account has been activated 

" Terminated: Actor will no longer processes messages  
—e.g., termination of email account after graduation

10



COMP 322, Spring 2021 (M.Joyner)

Worksheet #21: Interaction between finish and actors
What output will be printed if the end-finish operation from slide 15 is moved from line 13 to line 11 as shown below?  

1.  finish(() -> {
2.    int threads = 4;
3.    int numberOfHops = 10;
4.    ThreadRingActor[] ring = new ThreadRingActor[threads];
5.    for(int i=threads-1;i>=0; i--) {
6.      ring[i] = new ThreadRingActor(i);
7.      ring[i].start(); // like an async
8.      if (i < threads - 1) {
9.        ring[i].nextActor(ring[i + 1]);
10.     } }
11. }); // finish
12.ring[threads-1].nextActor(ring[0]);
13.ring[0].send(numberOfHops);
14.  

11

Deadlock (no output): the end-finish 
operation in line 11 waits for all the 
actors started in line 7 to terminate, 
but the actors are waiting for the 
message sequence initiated in line 13 
before they call exit().



COMP 322, Spring 2021 (M.Joyner)

Worksheet #22: Analyzing Parallelism in an Actor Pipeline
Consider a three-stage pipeline of actors (as in slide 5), set up so that P0.nextStage = P1, P1.nextStage = P2, and 
P2.nextStage = null.  The process() method for each actor is shown below.   

Assume that 100 non-null messages are sent to actor P0 after all three actors are started, followed by a null 
message.  What will the total WORK and CPL be for this execution?  Recall that each actor has a sequential 
thread. 

1.      protected void process(final Object msg) {
2.            if (msg == null) {
3.                exit();
4.            } else {
5.                doWork(1); // unit work
6.            }
7.            if (nextStage != null) {
8.                nextStage.send(msg);
9.            }
10.        }

 

12

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998

P0

P4

P3

P5

P2

P1

Time

Figure 5.6 Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0 P0 P1 P2 P3 P4 P5

(a) Pipeline structure

(b) Timing diagram

P8

P7

P9

P6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

P7P6 P8 P9

Input sequence

p " 1 n

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8

d0 d1 d2 d3 d4 d5 d6 d7

d0 d1 d2 d3 d4 d5 d6

...

WORK = 300, CPL = 102



COMP 322, Spring 2021 (M.Joyner)

Worksheet #23: Synchronized Reply using Pause/Resume
Actors don’t normally require synchronization with other actors.  However, sometimes we might want actors 
to be in synch with one another.  Using a DDF and pause/resume, ensure that the SynchSenderActor doesn’t 
process the next message until notified by the SyncReplyActor that the message was received and 
processed.

13

1.class SynchSenderActor 
2.    extends Actor<Message> {
3.  private Actor otherActor = …
4.  void process(Msg msg) {
5.    ...
6.    DDF<T> ddf = newDDF();
7.    otherActor.send(ddf);
8.    pause(); // non-blocking
9.    asyncAwait(ddf, () -> { 
10.     T synchronousReply = ddf.get();
11.      println("Response received");
12.      resume(); // non-blocking
13.    });
14.    ...
15.} }

1.class SynchReplyActor 
2.    extends Actor<DDF> {
3.  void process(DDF msg) {
4.    ...
5.    println("Message received");
6.    // process message
7.    T responseResult = ...;
8.    msg.put(responseResult);
9.    ...
10.} }



COMP 322, Spring 2021 (M.Joyner)

Synchronized statements and methods in Java (Lecture 24)

• Every Java object has an associated lock acquired via: 
— synchronized statements 

–   synchronized( foo ) { // acquire foo’s lock 
   // execute code while holding foo’s lock 
} // release foo’s lock 

— synchronized methods 
–  public synchronized void op1() { // acquire ‘this‘ lock 

   // execute method while holding ‘this’ lock 
} // release ‘this’ lock 

• Java language does not enforce any relationship between the object used for locking and objects 
accessed in isolated code 

— If same object is used for locking and data access, then the object behaves like a monitor 

• Locking and unlocking are automatic 
— Locks are released when a synchronized block exits 

• By normal means: end of block reached, return, break 
• When an exception is thrown and not caught

14



COMP 322, Spring 2021 (M.Joyner)

Dynamic Order Deadlocks
• There are even more subtle ways for threads to deadlock due to inconsistent lock ordering 

— Consider a method to transfer a balance from one account to another: 
public class SubtleDeadlock { 
       public void transferFunds(Account from,  
                                 Account to,  
                                 int amount) { 
           synchronized (from) { 
               synchronized (to) { 
                   from.subtractFromBalance(amount); 
                   to.addToBalance(amount); 
               } 
           } 
       } 
   } 

— What if one thread tries to transfer from A to B while another tries to transfer from B to A ? 
Inconsistent lock order again – Deadlock!

15



COMP 322, Spring 2021 (M.Joyner)

Deadlock avoidance in HJ with object-based isolation

• HJ implementation ensures that all locks are acquired in the same order 

• ==> no deadlock 
  

 public class ObviousDeadlock { 
    . . . 
    public void leftHand() { 
      isolated(lock1,lock2) { 
        for (int i=0; i<10000; i++)  
           sum += random.nextInt(100); 
      } 
    } 
 }

16

    public void rightHand() { 
      isolated(lock2, lock1) { 
        for (int i=0; i<10000; i++)  
          sum += random.nextInt(100); 
      } 
    } 
 }



COMP 322, Spring 2021 (M.Joyner)

One possible solution to Worksheet #24

1) Write a sketch of the pseudocode for a Java threads program that exhibits a data race using start() and 
join() operations. 

1. // Start of thread t0 (main program) 

2. sum1 = 0; sum2 = 0; // Assume that sum1 & sum2 are fields  

3. // Compute sum1 (lower half) and sum2 (upper half) in parallel 

4. final int len = X.length; 

5. Thread t1 = new Thread(() -> {  

6.                 for(int i=0 ; i < len/2 ; i++) sum1+=X[i];}); 

7. t1.start(); 

8. Thread t2 = new Thread(() -> {  

9.                 for(int i=len/2 ; i < len ; i++) sum2+=X[i];}); 

10. t2.start(); 

11. int sum = sum1 + sum2; //data race between t0 & t1, and t0 & t2  

12. t1.join(); t2.join();

17



COMP 322, Spring 2021 (M.Joyner)

One possible solution to Worksheet #24 (contd)

2) Write a sketch of the pseudocode for a Java threads program that exhibits a data race using 
synchronized statements. 

1. // Start of thread t0 (main program) 

2. sum = 0; // static int field 

3. Object a = new ... ; 

4. Object b = new ... ; 

5. Thread t1 = new Thread(() ->  

6.                        { synchronized(a) { sum++; } }); 

7. Thread t2 = new Thread(() ->  

8.                        { synchronized(b) { sum++; } }); 

9. t1.start(); 

10. t2.start(); // data race between t1 & t2   

11. t1.join(); t2.join();

18



COMP 322, Spring 2021 (M.Joyner)

java.util.concurrent.locks.Lock interface (Lecture 26)
1. interface Lock { 

2.     // key methods 

3.     void lock(); // acquire lock 

4.     void unlock(); // release lock 

5.     boolean tryLock(); // Either acquire lock (returns true), or return false if lock is not obtained. 

6.                                  // A call to tryLock() never blocks! 

7.   

8.     Condition newCondition();  // associate a new condition 

9. } 

java.util.concurrent.locks.Lock interface is implemented by java.util.concurrent.locks.ReentrantLock class

19



COMP 322, Spring 2021 (M.Joyner)

java.util.concurrent.locks.ReadWriteLock interface
interface ReadWriteLock { 
  Lock readLock(); 
  Lock writeLock(); 

  } 

• Even though the interface appears to just define a pair of locks, the semantics of the pair of locks is coupled as 
follows 
—Case 1: a thread has successfully acquired writeLock().lock() 

– No other thread can acquire readLock() or writeLock() 

—Case 2: no thread has acquired writeLock().lock() 
– Multiple threads can acquire readLock() 
– No other thread can acquire writeLock() 

• java.util.concurrent.locks.ReadWriteLock interface is implemented by 
java.util.concurrent.locks.ReadWriteReentrantLock class

20



COMP 322, Spring 2021 (M.Joyner)

Hashtable Example
class Hashtable<K,V> {
  …
  // coarse-grained, one lock for table
  ReadWriteLock lk = new ReentrantReadWriteLock(); 
  V lookup(K key) {
    int bucket = hasher(key);
    lk.readLock().lock(); // only blocks writers
    … read array[bucket] … 
    lk.readLock().unlock();
  }
  void insert(K key, V val) {
    int bucket = hasher(key);
    lk.writeLock().lock(); // blocks readers and writers
  … write array[bucket] … 

    lk.writeLock().unlock();
  }
}

21



COMP 322, Spring 2021 (M.Joyner)

Worksheet #26 Solution: Use of trylock()
Rewrite the transferFunds() method below to use j.u.c. locks with calls to tryLock (see slide 4) instead of 
synchronized.   

Your goal is to write a correct implementation that never deadlocks, unlike the buggy version below (which can 
deadlock).   

Assume that each Account object already contains a reference to a ReentrantLock object dedicated to that object 
e.g., from.lock() returns the lock for the from object.  Sketch your answer using pseudocode. 

1.     public void transferFunds(Account from, Account to, int amount) { 
2.    while (true) { 
3.      // assume that trylock() does not throw an exception 
4.      boolean fromFlag = from.lock.trylock(); 
5.      if (!fromFlag) continue;  
6.      boolean toFlag = to.lock.trylock(); 
7.      if (!toFlag) { from.lock.unlock(); continue; } 
8.      try { from.subtractFromBalance(amount);  
9.            to.addToBalance(amount); break; } 
10.      finally { from.lock.unlock(); to.lock.unlock(); } 
11.    } // while 
12.  }

22



COMP 322, Spring 2021 (M.Joyner)

Linearizability of Concurrent Objects (Lecture 27)

Concurrent object 
• A concurrent object is an object that can correctly handle methods invoked in parallel by different tasks or 

threads 
—Examples: Concurrent Queue, AtomicInteger 

Linearizability 
• Assume that each method call takes effect “instantaneously” at some distinct point in time between its 

invocation and return. 
• An execution is linearizable if we can choose instantaneous points that are consistent with a sequential 

execution in which methods are executed at those points 
• An object is linearizable if all its possible executions are linearizable

23



COMP 322, Spring 2021 (M.Joyner)

Example 2: is this execution linearizable?

24

time

q.enq(x)

q.enq(y)

q.deq():yq.enq(x)

q.enq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 

Task T1

Task T2

not linearizable

http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt


COMP 322, Spring 2021 (M.Joyner)

Worksheet #27: Execution of concurrent implementation of FIFO 
queue q

Is this a linearizable execution?

25

Yes!  Can be linearized as “q.enq(x) ; q.enq(y) ; q.deq():x”



COMP 322, Spring 2021 (M.Joyner)

Organization of a Distributed-Memory Multiprocessor 
(Lecture 29 - Start of Module 3)

Figure (a) 
• Host node (Pc) connected to a cluster of processor nodes (P0 … Pm) 
• Processors P0 … Pm communicate via an interconnection network which could be standard TCP/IP 

(e.g., for Map-Reduce) or specialized for high performance communication (e.g., for scientific 
computing) 

Figure (b) 
• Each processor node consists of a processor, memory, and a Network Interface Card (NIC) connected 

to a router node (R) in the interconnect           

26

Processors communicate by sending messages via an interconnect



COMP 322, Spring 2021 (M.Joyner)

Our First MPI Program (mpiJava)

1. import mpi.*; 
2. class Hello { 
3.     static public void main(String[] args) { 
4.        // Init() be called before other MPI calls 
5.        MPI.Init(args);  
6.        int npes = MPI.COMM_WORLD.Size()  
7.        int myrank = MPI.COMM_WORLD.Rank() ; 
8.        System.out.println(”My process number is ” + myrank); 
9.        MPI.Finalize(); // Shutdown and clean-up 
10.    } 
11.}

27

main() is enclosed in an 
implicit “forall” --- each 
process runs a separate 
instance of main() with 
“index variable” = myrank



COMP 322, Spring 2021 (M.Joyner)

Example of Send and Recv
1.import mpi.*;
2.class myProg {
3.  public static void main( String[] args ) {
4.    int tag0 = 0; int tag1 = 1;
5.    MPI.Init( args );       // Start MPI computation
6.    if ( MPI.COMM_WORLD.rank() == 0 ) { // rank 0 = sender
7.      int loop[] = new int[1]; loop[0] = 3;
8.      MPI.COMM_WORLD.Send( "Hello World!", 0, 12, MPI.CHAR, 1, tag0 );
9.      MPI.COMM_WORLD.Send( loop, 0, 1, MPI.INT, 1, tag1 );
10.    } else {                        // rank 1 = receiver
11.      int loop[] = new int[1]; char msg[] = new char[12];
12.      MPI.COMM_WORLD.Recv( msg, 0, 12, MPI.CHAR, 0, tag0 );
13.      MPI.COMM_WORLD.Recv( loop, 0, 1, MPI.INT, 0, tag1 );
14.      for ( int i = 0; i < loop[0]; i++ ) 
15.        System.out.println( msg );
16.    }
17.    MPI.Finalize( );       // Finish MPI computation
18.  }
19.}

Send() and Recv() calls are blocking operations

28



COMP 322, Spring 2021 (M.Joyner)

Worksheet #29: MPI send and receive
In the space below, indicate what values you expect the print statement in line 10 to output, assuming 
that the program is executed with two MPI processes. 

1. int a[], b[];
2. ...
3. if (MPI.COMM_WORLD.rank() == 0) {
4.    MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
5.    MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
6. }
7. else {
8.    Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 2);
9.    Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 1);
10.    System.out.println(“a = “ + a + “ ; b = “ + b);
11.}
12. …

Answer: Nothing!  The program will deadlock due to mismatched tags, with process 0 blocked at line 4, 
and process 1 blocked at line 8.

29



COMP 322, Spring 2021 (M.Joyner)

Non-Blocking Send and Receive Operations (Lecture 30)
• In order to overlap communication with computation, MPI provides a pair of functions for performing non-

blocking send and receive operations (“I” stands for “Immediate”) 

Request Isend(Object buf, int offset, int count, Datatype type, int dst, int tag) ; 
Request Irecv(Object buf, int offset, int count, Datatype type, int src, int tag) ; 

•Use Wait() to wait for operation to complete (like future get).  

Status Wait(Request request) 

• The Wait() operation is declared to return a Status object.  In the case of a non-blocking receive operation, 
this object has the same interpretation as the Status object returned by a blocking Recv() operation.

30



COMP 322, Spring 2021 (M.Joyner)

Worksheet #30: MPI send and receive
In the space below, use the minimum amount of non-blocking communication to reach the print 
statement in line 10 (assume that the program is executed with two MPI processes). 

1. int a[], b[];
2. ...
3. if (MPI.COMM_WORLD.rank() == 0) {
4.    MPI.COMM_WORLD.Isend(a, 0, 10, MPI.INT, 1, 1);
5.    MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
6. }
7. else {
8.    Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 2);
9.    Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 1);
10.    System.out.println(“a = “ + a + “ ; b = “ + b);
11.}
12. …

31



COMP 322, Spring 2021 (M.Joyner)

Collective Communications (Lecture 31)

• A popular feature of MPI is its family of collective communication operations. 
• Each collective operation is defined over a communicator (most often, MPI.COMM_WORLD) 

— Each collective operation contains an implicit barrier.  The operation completes and execution 
continues when all processes in the communicator perform the same collective operation. 

—A mismatch in operations results in deadlock e.g., 
Process 0: .... MPI.Bcast(...) .... 
Process 1: .... MPI.Bcast(...) .... 
Process 2: .... MPI.Gather(...) …. 

• A simple example is the broadcast operation: all processes invoke the operation, all agreeing on one 
root process.  Data is broadcast from that root. 

void Bcast(Object buf, int offset, int count, Datatype type, int root)

32



COMP 322, Spring 2021 (M.Joyner)

MPI Reduce
void MPI.COMM_WORLD.Reduce(

Object sendbuf /* in */,
int sendoffset /* in */,
Object recvbuf /* out */,
int recvoffset /* in */,
int count /* in */,
MPI.Datatype datatype /* in */,
MPI.Op operator /* in */,
int root /* in */ )

33

Rank0 
15

Rank1 
10

Rank2 
12

Rank3 
8

Rank4 
4

49

MPI.COMM_WORLD.Reduce(msg, 0, result, 0, 1, MPI.INT, MPI.SUM, 2);



COMP 322, Spring 2021 (M.Joyner)

Worksheet #31 Solution: MPI_Gather
In the space below, indicate what value should be provided instead of ??? in line 6, and how it should 
depend on myrank.  

2.  MPI.Init(args) ;
3.   int myrank = MPI.COMM_WORLD.Rank() ;
4.   int numProcs = MPI.COMM_WORLD.Size() ;
5.   int size = ...;
6.   int[] sendbuf = new int[size];
7.   int[] recvbuf = new int[???];
8.   . . . // Each process initializes sendbuf
9.   MPI.COMM_WORLD.Gather(sendbuf, 0, size, MPI.INT, 
10.                         recvbuf, 0, size, MPI.INT, 
11.                        0/*root*/);
12.  . . .
13.  MPI.Finalize();

Solution: myrank == 0 ? (size * numProcs) : 0 

34



COMP 322, Spring 2021 (M.Joyner)

Co-locating async tasks in “places” 
(Lecture 32)

// Main program starts at place 0 
asyncAt(place(0), () -> S1);  
asyncAt(place(0), () -> S2);

asyncAt(place(1), () -> S3);  
asyncAt(place(1), () -> S4); 
asyncAt(place(1), () -> S5);

35

asyncAt(place(2), () -> S6); 
asyncAt(place(2), () -> S7); 
asyncAt(place(2), () -> S8);

asyncAt(place(3), () -> S9); 
asyncAt(place(3), () -> S10);



COMP 322, Spring 2021 (M.Joyner)

Worksheet #32: impact of distribution on parallel completion time

1.  public void sampleKernel( 
2.      int iterations, int numChunks, Distribution dist) { 
3.    for (int iter = 0; iter < iterations; iter++) { 
4.      finish(() -> {  
5.        forseq (0, numChunks - 1, (jj) -> {  
6.          asyncAt(dist.get(jj), () -> { 
7.            doWork(jj); 
8.            // Assume that time to process chunk jj = jj units  
9.         });  
10.       }); 
11.     }); 
12.   } // for iter 
13. } // sample kernel

• Assume an execution with n places, each place with one worker thread 
• Will a block or cyclic distribution for dist have a smaller abstract completion time, assuming that all tasks on the 
same place are serialized with one worker per place? 
•Answer: Cyclic distribution because it leads to better load balance (locality was not a consideration in this problem)

36



COMP 322, Spring 2021 (M.Joyner)37

What is “Eureka Style” Computation?
• Many optimization and search problems 

attempts to find a result with a certain 
property or cost 

• Announce when a result has been found 
• An "aha!" moment – Eureka event 
• Can make rest of the computation 
unnecessary 

==> Opportunities for “speculative 
parallelism”, e.g., Parallel Search, Branch 
and Bound Optimization, Soft Real-Time 
Deadlines, Convergence Iterations, . . . 

Image source: http://www.netstate.com/
states/mottoes/images/ca_eureka.jpg



COMP 322, Spring 2021 (M.Joyner)

Tree Min Index Search Example
HjExtremaEureka<Integer> eureka = newExtremaEureka( 
  Integer.MAX_VALUE, (Integer i, Integer j) -> j.compareTo(i)); 
finish(eureka, () -> { 
    async(() -> { 
        minIndexSearchBody(eureka, rootNode, elemToSearch); 
    }); 
}); 

private static void minIndexSearchBody( 
  HjExtremaEureka<Integer> eureka, Node rootNode,  
  int elemToSearch) throws SuspendableException { 
    eureka.check(rootNode.id); 
    if (rootNode.value == elemToSearch) { 
        eureka.offer(rootNode.id); 
    } 
    if (rootNode.left != null) { 
        async(() -> { 
            minIndexSearchBody(eureka, rootNode.left, elemToSearch); 
        }); 
    } 
    if (rootNode.right != null) { 
        async(() -> { 
            minIndexSearchBody(eureka, rootNode.right, elemToSearch); 
        }); 
    } 
}

38

Inputs: 
• binary tree, T 
• id for each node in T, in 

breadth-first order e.g., 
root.id = 0, root.left.id = 1, 
root.right.id = 2, … 

• value for each node in T 
that is the search target 

Outputs: 
• calls to offer() update 

eureka with minimum id 
found so far (among those 
that match) 

• calls to check() can lead to 
early termination if the 
argument is >= than 
current minimum in eureka 

• final value of eureka 
contains minimum id of 
node with value == 
elemToSearch



COMP 322, Spring 2021 (M.Joyner)

Worksheet #33: Finding maximal index of goal in matrix 

Below is a code fragment intended to find the maximal (largest) index of a goal value that occurs multiple times in the 
input matrix. What logical error(s) are there in the code?

39

1. class AsyncFinishEurekaSearchMaxIndexOfGoal { 
2.   HjEureka eurekaFactory() { 
3.     comparator = (cur, newVal) -> { // cur is initially [-1, -1] 

      (cur.x==newVal.x) ? (newVal.y - cur.y) : (newVal.x - cur.x) } 
4.     return new MaximaEureka([-1, -1], comparator) 
5.   } 
6.   int[] doWork(matrix, goal) { 
7.     val eu = eurekaFactory()  
8.     finish (eu, () -> { // eureka registration 
9.       forasync (0, matrix.length - 1, (r) ->  
10.         procRow(matrix(r), r, goal)); 
11.     }); 
12.     return eu.get() 
13.   } 
14.   void procRow(array, r, goal) { 
15.     for (int c = 0; c < array.length(); c++) 
16.       check([r, c]) // terminate if comparator returns negative 
17.       if goal.match(array(c)) offer([r, c]) // updates cur in eureka 
18.   } }

This code has no logical error, but is inefficient  
due to starting c at 0 instead of array.length() -1


