Worksheet #34: Parallelizing the Split step in Radix Sort

The Radix Sort algorithm loops over the bits in the binary
representation of the keys, starting at the lowest bit, and

executes a split operation for each bit as shown below. The procedure split(A. Flags)

split operation packs the keys with a 0 in the corresponding Ln revin - scan(+, rew(Flags)) // rev = reverse
bit to the bottom of a vector, and packs the keys with a 1 to in parallel for each index 1

the top of the same vector. It maintains the order within both if (Flagsli])

Index|i] <« I-upli]
groups. else

Index[i] <+ I-downli]
result <« permute(A, Index)

The sort works because each split operation sorts the keys

with respect to the current bit and maintains the sorted order . S S
of all the lower bits. Your task is to show how the split o e e e m .
operation (complete I-down) can be performed in parallel Lup _ B @ B 6 6 6 [7
[101 111 011 001 100 010 111 010] fndex B :3 ! ° | ! : ! 2:
1.8 = 57 31427 2] permute(A, Index) = |4 2 2 5 7 3 1 7
2.A{(0) = [11110010] //lowest bit
, _ FIGURE 1.9
3 'A(_Spllt (A'A(O)) - [4 225731 7] . . The split operation packs the elements with a 0 in the corresponding flag
4 -A(1) = [O 110110 1] // middle bit position to the bottom of a vector, and packs the elements with a 1 to the
5. A‘-Spl it (A, A(1)) = [4 5 1 2 2 7 3 17] top of the same vector. The permute writes each element of A to the index
6 A(2) - [1 100010 1] // highGSt bit specified by the corresponding position in Index.
7.Asplit(A,A(2)) =11 2 2 3 45 7 7]

COMP 322, Spring 2021 (M.Joyner)

