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Computation Graphs

•  Structured parallelism (finish/async):  
Create structured graphs (similar to what structured programming can create) 
No high-level data representation: have to share data 
Fast implementation, easy to synchronize large # of tasks 

•  Futures and future tasks:  
Easy to construct unstructured, arbitrary graphs 
Elegant, functional high-level data representation: futures 
Functional, “push” model: “where is the data going to, create futures for those” 
Large overhead when handling large # of tasks 

•  Promises and data-driven tasks:  
Easy to construct unstructured, arbitrary graphs with unknown task-promise association 
Data-driven, “pull” model: “what data does this DDT depend on, create promises for those” 
Can have a faster implementation than futures 
Large overhead when handling large # of tasks

3



COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Ordering Constraints and Transitive Edges in a Computation Graph

•The primary purpose of a computation graph is to determine if an ordering constraint exists between 
two steps (nodes) 
—Observation: Node A must be performed before node B if there is a path of directed edges 
from A and B 

•An edge, X →Y, in a computation graph  is said to be transitive if there exists a path of directed edges 
from X to Y that does not include the X →Y edge 
—Observation: Adding or removing a transitive edge does not change the ordering 
constraints in a computation graph
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Ideal Parallelism (Recap)

• Define ideal parallelism of Computation G Graph as the ratio, 
WORK(G)/CPL(G) 

• Ideal Parallelism only depends on the computation graph, and is 
the speedup that you can obtain with an unbounded number of 
processors
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Example: 
WORK(G) = 26 
CPL(G) = 11 
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36 
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What is the critical path length of this 
parallel computation?
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1.  finish (() !-> {        !// F1 
2.    async (() !-> A);     !// Boil water & pasta (10) 
3.    finish (() !-> {      !// F2 
4.      async (() !-> B1);  !// Chop veggies (5) 
5.      async (() !-> B2);  !// Brown meat (10) 
6.    });                  !// F2 
7.    B3;                  !// Make pasta sauce (5) 
8.  })                     !// F1

Step A

Step B1 Step B2
Step B3
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Scheduling of a Computation Graph on a fixed 
number of processors

Node label = time(N), for all nodes N in the graph
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NOTE: this schedule achieved a 
completion time of 11.  Can we 
do better?
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Scheduling of a Computation Graph on a fixed 
number of processors

•Assume that node N takes TIME(N) regardless of which processor it executes on, and that there is no overhead for 
creating parallel tasks 

•A schedule specifies the following for each node 
—START(N) = start time 
—PROC(N) = index of processor in range 1...P 

such that 
—START(i) + TIME(i) <= START(j), for all CG edges from i to j (Precedence constraint) 
—A node occupies consecutive time slots in a processor (Non-preemption constraint) 
—All nodes assigned to the same processor occupy distinct time slots (Resource constraint)
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Greedy Schedule

•A greedy schedule is one that never forces a processor to be idle when one or more nodes are 
ready for execution  

• A node is ready for execution if all its predecessors have been executed 

• Observations 
—T1 = WORK(G), for all greedy schedules 
—T∞ = CPL(G), for all greedy schedules 

• TP(S) = execution time of schedule S for computation graph G on P processors 
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Lower Bounds on Execution Time of Schedules

•Let TP = execution time of a schedule for computation graph G on P processors 

—TP  can be different for different schedules, for same values of G and P 

•Lower bounds for all greedy schedules 
—Capacity bound: TP  ≥ WORK(G)/P 
—Critical path bound: TP  ≥ CPL(G) 

•Putting them together 
—TP  ≥ max(WORK(G)/P, CPL(G))
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Upper Bound on Execution Time of Greedy 
Schedules
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Theorem [Graham ’66].  
Any greedy scheduler achieves 

TP ≤ WORK(G)/P + CPL(G)

Proof sketch: 
Define a time step to be complete if P processors are 

scheduled at that time, or incomplete otherwise 

# complete time steps ≤ WORK(G)/P 

# incomplete time steps ≤ CPL(G) 
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Bounding the Performance of Greedy 
Schedulers

Combine lower and upper bounds to get  
max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G) 

Corollary: Any greedy scheduler achieves execution time TP that is within a factor of 2 of the optimal 
time (since max(a,b) and (a+b) are within a factor of 2 of each other, for any a ≥ 0,b ≥ 0 ). 

Corollary 2: Lower and upper bounds approach the same value whenever: 
There’s lots of parallelism, WORK(G)/CPL(G) >> P 
Or there’s little parallelism,  WORK(G)/CPL(G) << P  
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Abstract Performance Metrics

• Basic Idea 

• Count operations of interest, as in big-O analysis, to evaluate parallel algorithms 

• Abstraction ignores many overheads that occur on real systems 

• Calls to doWork() 

• Programmer inserts calls of the form, doWork(N) within a task (async, future task or data-driven task) to indicate abstract 
execution of N application-specific abstract operation 

• e.g., in lab 4, we included one call to doWork(1) for each double addition, and ignore the cost of everything else 

• Abstract metrics are enabled by calling HjSystemProperty.abstractMetrics.set(true) at start of program 
execution 

• If an HJ program is executed with this option, abstract metrics can be printed at end of program execution with 
calls to abstractMetrics().totalWork(), abstractMetrics().criticalPathLength(), and 
abstractMetrics().idealParallelism()
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Abstract Performance Metrics

• Pay attention where you put doWork() calls 

• What does this mean? 
var bottom = future(() !-> . . .); 
var top = future(() !-> . . .) 
doWork(1); 
return bottom.get() + top.get(); 
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• Correct: 
var bottom = future(() !-> . . .); 
var top = future(() !-> . . .); 

var bottomVal = bottom.get(); 
var topVal = top.get(); 
doWork(1); 
return bottomVal + topVal; 


