

COMP 322: Parallel and Concurrent Programming

Lecture 12: Scheduling

- Zoran Budimlić and Mack Joyner {zoran, mjoyner}@rice.edu
 - http://comp322.rice.edu

Lecture 12 7 February 2022

Promises and Data-Driven Tasks

- Structured parallelism (finish/async): Create structured graphs (similar to what structured programming can create) No high-level data representation: have to share data Fast implementation, easy to synchronize large # of tasks
- Futures and future tasks: Easy to construct unstructured, arbitrary graphs Elegant, functional high-level data representation: futures Functional, "push" model: "where is the data going to, create futures for those" Large overhead when handling large # of tasks
- Promises and data-driven tasks: Easy to construct unstructured, arbitrary graphs with unknown task-promise association Data-driven, "pull" model: "what data does this DDT depend on, create promises for those" Can have a faster implementation than futures Large overhead when handling large # of tasks

Computation Graphs

Ordering Constraints and Transitive Edges in a Computation Graph

- The primary purpose of a computation graph is to determine if an ordering constraint exists between two steps (nodes) -Observation: Node A must be performed before node B if there is a path of directed edges from A and B
- An edge, $X \rightarrow Y$, in a computation graph is said to be transitive if there exists a path of directed edges from X to Y that does not include the $X \rightarrow Y$ edge -Observation: Adding or removing a transitive edge does not change the ordering constraints in a computation graph

- Define ideal parallelism of Computation G Graph as the ratio, WORK(G)/CPL(G)
- Ideal Parallelism only depends on the computation graph, and is the speedup that you can obtain with an unbounded number of processors

Example: WORK(G) = 26CPL(G) = 11**Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36**

Ideal Parallelism (Recap)

What is the critical path length of this parallel computation?

1.	finish (() \rightarrow {	//
2.	async (() \rightarrow A);	//
3.	finish (() \rightarrow {	//
4.	async (() \rightarrow B1);	//
5.	async (() \rightarrow B2);	//
6.	<pre>});</pre>	//
7.	B3;	//
8.	})	//

- F1
- Boil water & pasta (10) F2
- Chop veggies (5)
- Brown meat (10) F2
- Make pasta sauce (5) F1

Step B1

Step B2

Step A

Step B3

Scheduling of a Computation Graph on a fixed number of processors

Node label = time(N), for all nodes N in the graph

NOTE: this schedule achieved a completion time of 11. Can we do better?

Start time	Proc 1	Proc 2	Proc
0	Α		
1	В		
2	С	N	
3	D	N	
4	D	N	
5	D	N	
6	D	Q	
7	E	R	
8	F	R	
9	G	R	
10	н		
11	Completion time = 11		

Scheduling of a Computation Graph on a fixed number of processors

- creating parallel tasks
- A schedule specifies the following for each node -START(N) = start time
 - -PROC(N) = index of processor in range 1...P
 - such that
 - -START(i) + TIME(i) <= START(j), for all CG edges from i to j (Precedence constraint)
 - -A node occupies consecutive time slots in a processor (Non-preemption constraint)
 - -All nodes assigned to the same processor occupy distinct time slots (Resource constraint)

• Assume that node N takes TIME(N) regardless of which processor it executes on, and that there is no overhead for

•A greedy schedule is one that never forces a processor to be idle when one or more nodes are ready for execution

- A node is ready for execution if all its predecessors have been executed
- Observations $-T_1 = WORK(G)$, for all greedy schedules
 - $-T_{\infty}$ = CPL(G), for all greedy schedules
- $T_P(S)$ = execution time of schedule S for computation graph G on P processors

- Let T_P = execution time of a schedule for computation graph G on P processors $-T_{P}$ can be different for different schedules, for same values of G and P
- Lower bounds for all greedy schedules -Capacity bound: $T_P \ge WORK(G)/P$ -Critical path bound: $T_P \ge CPL(G)$
- Putting them together
- $-T_{P} \ge max(WORK(G)/P, CPL(G))$

Lower Bounds on Execution Time of Schedules

Upper Bound on Execution Time of Greedy Schedules

Theorem [Graham '66]. Any greedy scheduler achieves

 $T_{P} \leq WORK(G)/P + CPL(G)$

Proof sketch:

Define a time step to be complete if P processors are scheduled at that time, or incomplete otherwise

complete time steps \leq WORK(G)/P

incomplete time steps \leq CPL(G)

Start time	Proc 1	Proc 2	Proc 3
0	Α		
1	В		
2	С	N	
3	D	N	I
4	D	N	J
5	D	N	K
6	D	Q	L
7	E	R	Μ
8	F	R	0
9	G	R	Р
10	Н		
11			

Combine lower and upper bounds to get $max(WORK(G)/P, CPL(G)) \le T_P \le WORK(G)/P + CPL(G)$

time (since max(a,b) and (a+b) are within a factor of 2 of each other, for any $a \ge 0, b \ge 0$).

Corollary 2: Lower and upper bounds approach the same value whenever: There's lots of parallelism, WORK(G)/CPL(G) >> P Or there's little parallelism, WORK(G)/CPL(G) << P

- Corollary: Any greedy scheduler achieves execution time T_P that is within a factor of 2 of the optimal

- Basic Idea
- Count operations of interest, as in big-O analysis, to evaluate parallel algorithms
- Abstraction ignores many overheads that occur on real systems
- Calls to doWork()
- Programmer inserts calls of the form, doWork(N) within a task (async, future task or data-driven task) to indicate abstract execution of N application-specific abstract operation
 - e.g., in lab 4, we included one call to doWork(1) for each double addition, and ignore the cost of everything else
- Abstract metrics are enabled by calling HjSystemProperty.abstractMetrics.set(true) at start of program execution
- If an HJ program is executed with this option, abstract metrics can be printed at end of program execution with calls to abstractMetrics().totalWork(), abstractMetrics().criticalPathLength(), and abstractMetrics().idealParallelism()

- Pay attention where you put doWork() calls
- What does this mean?

```
var bottom = future(() \rightarrow ...);
var top = future(() \rightarrow ...)
doWork(1);
return bottom.get() + top.get();
```

Correct:

```
var bottom = future(() \rightarrow ...);
var top = future(() \rightarrow \ldots);
var bottomVal = bottom.get();
var topVal = top.get();
doWork(1);
return bottomVal + topVal;
```

Abstract Performance Metrics

