
COMP 322: Fundamentals of Parallel Programming

Lecture 30: Task Affinity with Places

Mack Joyner and Zoran Budimlić

{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322	 Lecture 30	 March 2022

http://comp322.rice.edu

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Organization of a Shared-Memory Multicore Symmetric Multiprocessor
(SMP)

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache
(shared by all cores)

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

• Memory hierarchy for a single Intel Xeon (Nehalem) Quad-core processor chip

—A NOTS node contains TWO 8-core or 12-core E5-2650 v2 Ivy Bridge chips, for a total of 16 or 24 cores

2

Cores communicate

by reading and writing

data in a “shared memory”

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

What is the cost of a Memory Access?

An example Memory Hierarchy

Registers

L1 cache
 (Static RAM)

Main memory
(Dynamic RAM)

Local secondary storage
(local disks)

Larger,

slower,

cheaper

per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(Static RAM)

L1 cache holds cache lines
retrieved from L2 cache

CPU registers hold words retrieved
from L1 cache

L2 cache holds cache lines
retrieved from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,

faster,

costlier

per byte

Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx3

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Cache Memories
• Cache memories are small, fast SRAM-based memories managed

automatically in hardware.

—Hold frequently accessed blocks of main memory

• CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory.

• Typical system structure:

4 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Locality
• Principle of Locality:

—Empirical observation: Programs tend to use data and instructions with addresses near or
equal to those they have used recently

• Temporal locality:
—Recently referenced items are likely  

to be referenced again in the near future

• Spatial locality:
— Items with nearby addresses tend  

to be referenced close together in time

—A Java programmer can only influence spatial locality at the intra-object level

– The garbage collector and memory management system determines inter-object placement

5 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Locality Example

• Data references

—Reference array elements in succession

(stride-1 reference pattern).

—Reference variable sum each iteration.

• Instruction references

—Cycle through loop repeatedly.

—Reference instructions in sequence.

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;

6 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Memory Hierarchy in a Multicore Processor

• Memory hierarchy for a single Intel Xeon (Nehalem) Quad-core processor chip

7

Core-pair

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache
(shared by all cores)

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Programmer Control of Task Assignment to Processors

• The parallel programming constructs that we’ve studied thus far result in tasks
that are assigned to processors dynamically by the HJ runtime system

— Programmer does not worry about task assignment details

• Sometimes, programmer control of task assignment can lead to significant
performance advantages due to improved locality

• Motivation for HJ “places”

— Provide the programmer a mechanism to restrict task execution to a subset of processors for

improved locality

8

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Places in HJlib

HJ Places

Java Worker Threads

HJ programmer defines mapping from
HJ tasks to set of places

HJ Tasks

HJ runtime defines mapping from places to one or
more worker Java threads per place

The API calls

HjSystemProperty.numPlaces.set(p);
HjSystemProperty.numWorkers.set(w);

when executing an HJ program can be used to
specify
 p, the number of places
 w, the number of worker threads per place

we will abbreviate this as p:w

OS threads

Processor Cores

9

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Example of 4:2 option on an 8-core node�
(4 places w/ 2 workers per place)

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core E

Regs

L1
d-cache

Core F

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core G

Regs

L1
d-cache

Core H

L1
i-cache

10

Place 0 Place 1

Place 2 Place 3

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Places in HJlib
here() = place at which current task is executing

numPlaces() = total number of places (runtime constant)

Specified by value of p in runtime option:

HjSystemProperty.numPlaces.set(p);

place(i) = place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”

<place-expr>.id() returns the id of the place as an int

asyncAt(P, () -> S)
• Creates new task to execute statement S at place P

• async(() -> S) is equivalent to asyncAt(here(), () -> S)

• Main program task starts at place(0)

Note that here() in a child task refers to the place P at which the child task is executing, not the place where
the parent task is executing

11

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Example of 4:2 option on an 8-core node�
(4 places w/ 2 workers per place)

// Main program starts at place 0

asyncAt(place(0), () -> S1);

asyncAt(place(0), () -> S2);

asyncAt(place(1), () -> S3);

asyncAt(place(1), () -> S4);

asyncAt(place(1), () -> S5);

12

asyncAt(place(2), () -> S6);

asyncAt(place(2), () -> S7);

asyncAt(place(2), () -> S8);

asyncAt(place(3), () -> S9);

asyncAt(place(3), () -> S10);

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Example of 1:8 option (1 place w/ 8 workers per place)

13

All async’s run at place 0 when there’s only one place!

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core E

Regs

L1
d-cache

Core F

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core G

Regs

L1
d-cache

Core H

L1
i-cache

Place 0

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

HJ program with places

14

1. private static class T1 {

2. final HjPlace affinity;

4. public T1(HjPlace affinity) {

5. // set affinity of instance to place where it is created
6. this.affinity = here();

7. ...

8. }

9. public void foo() { ... }

10. }

11.

12. finish(() -> {

13. println("Parent place: " + here());

14. for (T1 a : t1Objects) {

15. // Execute async at place with affinity to a
16. asyncAt(a.affinity, () -> {

17. println("Child place: " + here()); // Child task's place
18. a.foo();

19. });

20. }

21. });

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Chunked Fork-Join Iterative Averaging Example with Places
1. public void runDistChunkedForkJoin(

2. int iterations, int numChunks, Dist dist) {

3. // dist is a user-defined map from int to HjPlace

4. for (int iter = 0; iter < iterations; iter++) {

5. finish(() -> {
6. for (0, numChunks - 1, (jj) -> {

7. asyncAt(dist.get(jj), () -> {

8. for (getChunk(1, n, numChunks, jj), (j) -> {

9. myNew[j] = (myVal[j-1] + myVal[j+1]) / 2.0;

10. }

11. });

12. });

13. });

14. double[] temp = myNew; myNew = myVal; myVal = temp;

15. } // for iter

16. }

• Chunk jj is always executed in the same place for each iter

• Method runDistChunkedForkJoin can be called with different values of distribution parameter d

15

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Analyzing Locality of Fork-Join Iterative Averaging Example with Places

16

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Block Distribution

• A block distribution splits the index region into contiguous subregions, one per
place, while trying to keep the subregions as close to equal in size as possible.

• Block distributions can improve the performance of parallel loops that exhibit
spatial locality across contiguous iterations.

• Example: dist.get(index) for a block distribution on 4 places, when index is in
the range, 0…15

17

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Distributed Parallel Loops

• The pseudocode below shows the typical pattern used to iterate over an input
region r, while creating one async task for each iteration p at the place dictated
by distribution d i.e., at place d.get(p).

• This pattern works correctly regardless of the rank and contents of input region
r and input distribution d i.e., it is not constrained to block distributions

18

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Cyclic Distribution

• A cyclic distribution “cycles” through places 0 … place.MAX PLACES − 1 when
spanning the input region

• Cyclic distributions can improve the performance of parallel loops that exhibit
load imbalance

• Example: dist.get(index) for a cyclic distribution on 4 places, when index is in
the range, 0…15

19

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Announcements & Reminders

• Quiz #6 is due today at 11:59pm

• Hw #4 is now due Sunday, April 3rd at 11:59pm

• Quiz #7 is due Wednesday, April 6th at 11:59pm

20

