COMP 322: Fundamentals of Parallel Programming

Lecture 30: Task Affinity with Places

Mack Joyner and Zoran Budimlić {mjoyner, zoran}@rice.edu

http://comp322.rice.edu

Organization of a Shared-Memory Multicore Symmetric Multiprocessor (SMP)

- Memory hierarchy for a single Intel Xeon (Nehalem) Quad-core processor chip
 - —A NOTS node contains TWO 8-core or 12-core E5-2650 v2 Ivy Bridge chips, for a total of 16 or 24 cores

What is the cost of a Memory Access? An example Memory Hierarchy

Cache Memories

- Cache memories are small, fast SRAM-based memories managed automatically in hardware.
 - Hold frequently accessed blocks of main memory
- CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory.
- Typical system structure:

Locality

- Principle of Locality:
 - Empirical observation: Programs tend to use data and instructions with addresses near or equal to those they have used recently
- Temporal locality:
 - Recently referenced items are likely to be referenced again in the near future

- Spatial locality:
 - Items with nearby addresses tend
 to be referenced close together in time

- A Java programmer can only influence spatial locality at the intra-object level
 - The garbage collector and memory management system determines inter-object placement

Locality Example

```
sum = 0;
for (i = 0; i < n; i++)
sum += a[i];
return sum;
```

- Data references
 - Reference array elements in succession (stride-1 reference pattern).
 - Reference variable sum each iteration.
- Instruction references
 - Cycle through loop repeatedly.
 - Reference instructions in sequence.

Memory Hierarchy in a Multicore Processor

Memory hierarchy for a single Intel Xeon (Nehalem) Quad-core processor chip

Programmer Control of Task Assignment to Processors

- The parallel programming constructs that we've studied thus far result in tasks that are assigned to processors dynamically by the HJ runtime system
 - Programmer does not worry about task assignment details
- Sometimes, programmer control of task assignment can lead to significant performance advantages due to improved locality
- Motivation for HJ "places"
 - Provide the programmer a mechanism to restrict task execution to a subset of processors for improved locality

Places in HJlib

HJ programmer defines mapping from HJ tasks to set of places

HJ runtime defines mapping from places to one or more worker Java threads per place

The API calls
HjSystemProperty.numPlaces.set(p);
HjSystemProperty.numWorkers.set(w);

when executing an HJ program can be used to specify

- p, the number of places
- w, the number of worker threads per place we will abbreviate this as p:w

Example of 4:2 option on an 8-core node (4 places w/ 2 workers per place)

Places in HJlib

```
here() = place at which current task is executing
numPlaces() = total number of places (runtime constant)
    Specified by value of p in runtime option:
    HjSystemProperty.numPlaces.set(p);
place(i) = place corresponding to index i
    <place-expr>.toString() returns a string of the form "place(id=0)"
    <place-expr>.id() returns the id of the place as an int
    asyncAt(P, () -> S)
```

- Creates new task to execute statement S at place P
- async(() -> S) is equivalent to asyncAt(here(), () -> S)
- Main program task starts at place(0)

Note that here() in a child task refers to the place P at which the child task is executing, not the place where the parent task is executing

Example of 4:2 option on an 8-core node (4 places w/ 2 workers per place)

```
// Main program starts at place 0
                                                                                                                                         asyncAt(place(1), () \rightarrow S3);
asyncAt(place(0), () \rightarrow S1);
                                                                                                                                         asyncAt(place(1), () \rightarrow S4);
asyncAt(place(0), () \rightarrow S2);
                                                                                                                                         asyncAt(place(1), () \rightarrow S5);
                                                                                                       Core C
                                                                             Core B
                                                                                                                                Core D
                                                    Core A
                                                              Place 0
                                                                                                                  Place 1
                                                    Reas
                                                                            Reas
                                                                                                      Reas
                                                                                                                               Reas
                                                                                                         L1
                                                                                                                                  L1
                                                                                                                                              L1
                                                               i-cache
                                                                          d-cache
                                                                                      i-cache
                                                                                                      d-cache
                                                                                                                i-cache
                                                                                                                                           i-cache
                                                 d-cache
                                                                                                                               d-cache
                                                              L2 unified cache
                                                                                                                  L2 unified cache
                                                                                                       Core G
                                                    Core E
                                                                             Core F
                                                                                                                                Core H
                                                                                                                 Place 3
                                                               Place 2
                                                                                                      Reas
                                                   Reas
                                                                            Reas
                                                                                                                               Reas
                                                                 L1
                                                                              L1
                                                     L1
                                                                                                                                              L1
                                                                                          L1
                                                                                                                                  L1
                                                  d-cache
                                                                           d-cache
                                                                                                      d-cache
                                                                                                                 i-cache
                                                                                                                                          i-cache
                                                               i-cache
                                                                                       i-cache
                                                                                                                               d-cache
                                                               L2 unified cache
                                                                                                                  L2 unified cache
 asyncAt(place(2), () \rightarrow S6);
                                                                                                                                            asyncAt(place(3), () \rightarrow S9);
 asyncAt(place(2), () \rightarrow S7);
```


asyncAt(place(3), () -> S10);

asyncAt(place(2), () -> S8);

Example of 1:8 option (1 place w/ 8 workers per place)

All async's run at place 0 when there's only one place!

HJ program with places

```
private static class T1 {
       final HjPlace affinity;
2.
       public T1(HjPlace affinity) {
4.
        // set affinity of instance to place where it is created
5.
        this.affinity = here();
6.
7.
         ---
8.
       public void foo() { ... }
9.
10.
11.
     finish(() -> {
12.
       println("Parent place: " + here());
13.
       for (T1 a : t1Objects) {
14.
        // Execute async at place with affinity to a
15.
        asyncAt(a.affinity, () -> {
16.
          println("Child place: " + here()); // Child task's place
17.
          a.foo();
18.
19.
```


Chunked Fork-Join Iterative Averaging Example with Places

```
1. public void runDistChunkedForkJoin(
    int iterations, int numChunks, Dist dist) {
    // dist is a user-defined map from int to HjPlace
    for (int iter = 0; iter < iterations; iter++) {
5.
     finish(() -> {
       for (0, numChunks - 1, (jj) -> {
        asyncAt(dist.get(jj), () -> {
         for (getChunk(1, n, numChunks, jj), (j) -> {
8.
           myNew[j] = (myVal[j-1] + myVal[j+1]) / 2.0;
10.
11.
        });
12.
       });
13.
       double[] temp = myNew; myNew = myVal; myVal = temp;
14.
    } // for iter
16. }
```

- Chunk jj is always executed in the same place for each iter
- Method runDistChunkedForkJoin can be called with different values of distribution parameter d

Analyzing Locality of Fork-Join Iterative Averaging Example with Places

16

Block Distribution

- A block distribution splits the index region into contiguous subregions, one per place, while trying to keep the subregions as close to equal in size as possible.
- Block distributions can improve the performance of parallel loops that exhibit spatial locality across contiguous iterations.
- Example: dist.get(index) for a block distribution on 4 places, when index is in the range, 0...15

Index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Place id	0				1				2				3			

Distributed Parallel Loops

- The pseudocode below shows the typical pattern used to iterate over an input region r, while creating one async task for each iteration p at the place dictated by distribution d i.e., at place d.get(p).
- This pattern works correctly regardless of the rank and contents of input region r and input distribution d i.e., it is not constrained to block distributions

Cyclic Distribution

- A cyclic distribution "cycles" through places 0 ... place.MAX PLACES 1 when spanning the input region
- Cyclic distributions can improve the performance of parallel loops that exhibit load imbalance
- Example: dist.get(index) for a cyclic distribution on 4 places, when index is in the range, 0...15

Index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Place id	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3

Announcements & Reminders

- Quiz #6 is due today at 11:59pm
- Hw #4 is now due Sunday, April 3rd at 11:59pm
- Quiz #7 is due Wednesday, April 6th at 11:59pm

