
1

Comp 311 HW06

Assignment 6:

Due 11:59pm Monday, October 23, 2023

Preliminaries

If you have no prior experience programming Java, read Chapter 1 of my
monograph entitled “The Elements of Object-Oriented Program Design”
(the only file in the wiki file-list
https://wiki.rice.edu/confluence/display/FPSCALA/Readings). You should
also download the drjava.jar file as explained below. These notes are
also recommended for anyone who wants a refresher on the Java design
patterns relevant to functional programming in Java.

This homework can be done using the Functional Language level of the
pedagogic programming environment DrJava, which auto-generates all
constructors and accessors as well as the redefinitions (“overrides”) of the
equals and toString methods for concrete classes on the assumption that
each such class constitutes a free algebraic type. DrJava supports
essentially the same interface as DrRacket. The most recent build of
DrJava (a Java 8 jar file called drjava.jar) can be downloaded from
https://www.cs.rice.edu/~javaplt/drjavarice/.

As an alternative, you can use a conventional Java IDE like IntelliJ. By the
way, Mac OS X is hostile to unlicensed Java apps like DrJava so if your
personal computer is a Mac and you already know how to write programs
in Java, you should probably use conventional Java. In your Java code,
you cannot use any mutation (modification of the value of a field or local
variable) or Java library code (other than classes in java.lang.*. If you
use conventional Java, make sure that your code runs in Java 8 and that
your tests work with Junit 4. In the absence of the code augmentation
performed by the Functional Language level in DrJava, you will have to
define the constructors, the accessors, and the equals and toString
methods for each concrete class. Your redefinition of equals should
implement structural equality (the behavior of equals? in Racket). Your
redefinition of toString should return a String identical to the program text
that constructs the object (except that the keyword new is elided). The

toString method that is automatically generated by DrJava (in the

https://wiki.rice.edu/confluence/display/FPSCALA/Readings
https://www.cs.rice.edu/~javaplt/drjavarice/

2

Functional Language Level) does precisely this. Java runtime diagnostics
often dump toString representations of the objects involved in aborting
errors, but this messages can be inscrutable because the default
implementation of toString inherited from Object is cryptic. (Try applying
the toString method to an array!)

Note that DrJava only works when it is run with a Java 8 SDK (available
from Amazon Corretto or Oracle).

Composite Design Pattern for List

The following is an object-oriented formulation of lists of integers.

 IntList is an abstract list of int.
 EmptyIntList is an IntList
 ConsIntList(first, rest), where first is an int and rest is an

IntList.

The above can be implemented in functional Java (as supported by the
DrJava functional language level as follows.

/** Abstract list structure
 * IntList := EmptyIntList + ConsIntList(int, IntList) */
abstract class IntList { }

/** Concrete empty list structure containing nothing. */
class EmptyIntList extends IntList { }

/** Concrete non-empty list structure containing an int, called first, and an
 * IntList called rest. */
class ConsIntList extends IntList {
 int first;
 IntList rest;
}

The above implementation is an example of what is called the Composite
Design Pattern. The composite design pattern is a special case of the
union pattern where one or more of the variants for the union type T
contains fields of root type T. In this pattern, the union is called a
composite. Here the union type is IntList and the variant ConsIntList is
said to be a composite because it includes a field of type IntList.

https://docs.aws.amazon.com/corretto/latest/corretto-8-ug/downloads-list.html
https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html

3

The composite pattern also prescribes a coding pattern for the methods
that process the composite type. Typically, the method code for each
variant class derived from the abstract class that is the “parent” class for
the variants. When a variant is called to perform an operation, the code in
the variant traverses its fields of root type and calls on them to perform the
same operation. It allows a client to treat an instance of type T and its
embedded instances uniformly using polymorphism.

This coding pattern is called the interpreter design pattern: it interprets the
abstract behavior of a class (as specified in the contract of the abstract
method) in each of its concrete subclasses. The composite pattern refers to
the structure of the composite type hierarchy, while the interpreter pattern
refers to how the behavior of the variants of the type are defined uniformly
via object-oriented polymorphism.

Interpreter Design Pattern for List

The interpreter design pattern applied to the above composite list structure
prescribes a coding pattern for list operations that is analogous to Racket
function template. It entails declaring an abstract method for each list
operation in the abstract list class, IntList, and defining corresponding
concrete methods in the concrete list subclasses: the empty list class,
EmptyIntList, and the non-empty list class, ConsIntList. The concrete
method for EmptyIntList corresponds to the base case in the Racket
function template while the concrete method in ConstIntList corresponds
to the recursive case by calling the same method on its rest.

The following is the coding template for the interpreter design pattern for
IntList and its subclasses.

abstract class IntList {
 abstract returnType methodName(parameter_list);
}

class EmptyIntList extends IntList {
 returnType methodName(parameter_list) {
 // base case code
 }
}

4

class ConsIntList extends IntList {
 int first;
 IntList rest;
 returnType methodName(parameter_list) {
 // ... first ...
 // ... rest.methodName(parameter_list) ...
 }
}

Problems

In your assignment repository, the stub file IntList.dj (named with file
extension .dj for compatibility with Functional Java in Drjava) contains
essentially the code given above. If you use an IDE like IntelliJ, you should
rename IntList.dj as IntList.java and fill in the (trivial) definitions of the
auto-generated constructors, accessors, and the equals and toString
methods in all concrete classes. For each problem below simply augment
the three classes provided in the stub file (or their renamed equivalents if
you are using conventional Java). In addition, edit the accompanying JUnit
test file (following the requirements of Junit 4) named IntListTest.dj (or
IntListTest.java in conventional Java) to create unit tests for each
problem. DrJava requires the names of JUnit test files to end with the
letters Test, which is probably a good idea anyway. Our grading script
which uses DrJava will handle either name. Drjava uses the file extension
to determine if a file is an ordinary Java file or a Functional Java file. Place
the tests for each problem in a test method with a name matching the
method being tested. For example, the name for the test method for
contains should be named testContains or something similar. (The

exact method names do not matter as long as the begin with the prefix
test, since we will run your IntListTest class using a Junit 4 runner which

uses reflection to discover all methods beginning with the prefix test.)

Apply the interpreter design pattern to IntList and its subclasses provided
in the IntList.dj file to write all of the following methods as augmentations
(additional code) of the IntList class. In addition, as stated above, edit
the provided JUnit test class, IntListTest to create tests for all of your
non-trivial (everything but successors) methods in the IntList
class. (Note: if you use conventional Java you have to write a few more
tests because your IntList class contains more methods.)

5

 (10 pts.) boolean contains(int key) returns true if key is in the list,
false otherwise.

 (10 pts.) int length() computes the length of the list.
 (10 pts.) int sum() computes the sum of the elements in the list.
 (10 pts.) double average() computes the average of the elements in

the list; returns 0 if the list is empty.
Hint: you can cast an int to double by using the prefix operator
(double).

 (10 pts.) IntList notGreaterThan(int bound) returns a list of
elements in this list that are less or equal to bound .

 (10 pts.) IntList remove(int key) returns a list of all elements in

this list that are not equal to key .
 (10 pts.) IntList subst(int oldN, int newN) returns a list of all

elements in this list with oldN replaced by newN .
 (30 pts.) IntList merge(IntList other) merges this list with the

input list other, assuming that this list and other are sorted in
ascending order. Note that the lists need not have the same length.

Hint: add a method mergeHelp(ConsIntList other) that does all of
the work if one list is non-empty (a ConsIntList). Only mergeHelp is
recursive. Use dynamic dispatch on the list that may be empty. Recall
that a.merge(b) is equivalent to b.merge(a) . This problem is the
Java analog of the merge-help function that you wrote in Assigment
2.

You may find it helpful to write Template Instantiations for all of the
methods that you define as an intermediate step in developing your code
BUT DO NOT submit these Template Instantiations (or corresponding
Templates) as part of your code documentation. The structure of your
program implicitly provides this information. Confine the documentation of
your Java code to writing contracts using javadoc notation, opening the

behavioral contract (preceding the corresponding definition) with /** and

closing it with */. For inherited methods do not repeat contracts given in

superclasses.

This assignment is intentionally very easy (a reprise of HW1 and HW2 in
Functional Java instead of Racket) so you can become familiar with writing
functional code in Java and writing unit tests for the defined methods.

6

Hints

1. You can simplify your coding if you add some “convenience” fields
and methods to the abstract class IntList such as:

 static final EmptyIntList EMPTY = new EmptyIntList();
 ConsIntList cons(int n) { return new ConsIntList(n, this); }

which enables you to write

 EMPTY.cons(2)

Instead of

 new ConsIntList(2, new EmptyIntList())

The stub file already includes the two members shown above in
IntList.

2. Avoid using the public attribute in general (except for methods in
interfaces which must be public) and particularly for classes because
Java has some funny rules about the names of files containing public
classes (and how many public classes can be placed in a single file).

So we will not declare our classes as public.

