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Multicore programming for the masses

Goal: a shared-memory model that
» is easy to learn and use
» supports irregular problems

» values correctness, ease-of-use




Race Conditions

// move $5 // move $10
acct[x] = acct[x] - 5; acct[i] = acct[i] - 10;
acctly] = acctly] + 5; acct[j] = acct[j] + 10;




Explicit Locks (7)

lock(acct[x]); lock(acct[i]);
lock(acctlyl); lock(acct[jl);

// move $5 // move $10

acct[x] = acct[x] - 5; acct[i] = acct[i] - 10;

acctly]l = acctly] + 5; acct[j] = acct[j] + 10;
unlock(acct[yl); unlock(acct[jl);
unlock(acct[x]); unlock(acct[i]);




Atomic Blocks

atomic {
// move
acct [x]
acct[y]
t

$5
= acct[x] - 5;
= acctly] + 5;

atomic {
// move $10
acct[i] = acct[i] - 10;
acct[j] = acct[j] + 10;
+




Atomic Blocks

while (acct[x] >= 5) {
// move $5
acct[x] = acct[x] - 5;
acctly]l = acctly] + 5;
}




Atomic Blocks

while (acct[x] >= 5) {
// move $5
acct[x] = acct[x] - 5;
acctly]l = acctly] + 5;
}

bool loopl;
do {
atomic {
loopl = acct[x] >= 5;
if (loopl) {
// move $5
acct[x] = acct[x] - 5;
acct[y] = acctlyl] + 5;
+

+
} while(loopl);




Cooperative Multithreading (for Uniprocessors)

» Only one thread runs at a time.

» yield switches threads; no preemption.




Cooperative
Multithreading

® Only one thread runs
at a time

® yield statements
switch threads

Thread A

Thread B




Cooperative

while (acct[x] >= 5) {
// move $5
acct[x] = acct[x] - 5;
acctly] = acctly] + 5;

while (acct[i] >= 10) {

+

// move
acct[i]
acct[j]

$10
= acct[i] - 10;
= acct[j] + 10;




Cooperative

while (acct[x] >= 5) { while (acct[i] >= 10) {
// move $5 // move $10
acct[x] = acct[x] - 5; acct[i] = acct[i] - 10;
acctly]l = acctly] + 5; acct[j] = acct[j] + 10;
+ +
while (acct[x] >= 5) { while (acct[i] >= 10) {
// move $5 // move $10
acct[x] = acct[x] - 5; acct[i] = acctl[i] - 10;
acctly]l = acctly] + 5; acct[j] = acctl[j] + 10;
yield; ylield;
+ +




OCM: A Model for Parallel Computation

» CM code = OCM code

» System may run threads simultaneously

» Fundamental guarantee: CM-Serializability

» Result is consistent with some uniprocessor
CM execution




Observationally Cooperative Multithreading

while (acct[x] >= 5) {

// move
acct [x]
acct [yl
yield;

$5

acct[x] - 5;
acctly] + 5;

while (acct[i] >= 10) {

// move
acct[i]
acct[j]
yield;

$10
= acct[i] - 10;
= acct[j]l + 10;




Let’s Try It...




A Parallel Perspective on yield

Threads primarily execute in isolation.

When a thread yields:
» Its changes are visible to the world

» Changes in the world become visible to it




Advantages of OCM

» We can reason sequentially between yields
» Fewer opportunities for deadlock

» Implementation-agnostic
P g




That’s nice...
But how do you
implement it?




You don’t need to
care.
‘It just works.”
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Classic idea: Locks




Implementing OCM with Locks

release_locks();
yield; —
acquire_locks();

» Need locks for data accessed through next yield

» Lock inference
» Programmer annotations

» OCM is responsible for avoiding deadlock.

» Optimizations: Lazy Acquire, Eager Release




Newer idea:
Atomic Transactions




Implementing OCM with STM

end_transaction();
yield;  —
begin_transaction() ;

» One subtlety: “unreturning’ from functions




Unreturning from Functions

void caller() {
callee();

yleld;
¥

void callee() {
yield;




Unreturning from Functions

void caller() { void callee() {
callee(); yield;
yield; by

+

Solutions:

» Access the stack through STM

» Or, save and restore stack segments




Proof of Concept Implementations

» Uniprocessor CV

» Pthreads 4+ Big Lock

» Pthreads + Big Lazy Lock

» Explicit Locks

» Lua (proxy objects)
» C subset (lock inference)
» Software Transactional Memory
» Lua (TinySTM)
» C++  (wrapper objects, TinySTM/TL2)




Example: Dijkstra's Dining Philosophers




Traditional Philosophers

philosopher(int i):
for iter in (1..ITERS):
think() ;

yieldUntil (isFreel[i] && isFree[(i+1) % NI1);

isFreel[i] = false;
isFree[(i+1) % N] = false;
yleld;

eat();

isFree[i] = true;

isFree[(i+1) % N] = true;
yield;




True OCM Philosophers

philosopher(int i):
for iter in (1..ITERS):
think () ;
ylield;

eat (fork[i], fork[(i+1) % NI1);
yield,;




Speedup: Traditional & True OCM Philosophers
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Debugging and Profiling

» OCM guarantees CM-Serializability.

» Run in parallel, record serial equivalent
» 'Replay’ the trace in uniprocessor CM.

» Implemented in 2 proof-of-concept
implementations.




Conclusion

» OCM appears promising
» Simple programming model
» Supports “irregular’ problems
» Debugging support
» Many possible implementations

» Future Work

» Larger benchmark suite

» More examples

» Better/different OCM implementations
» Study “ease of programming’




We'd love your help!







