Observationally
Cooperative

Melissa O’Neill
Chris Stone
lots of summer students

Parallel
programming Is

Parallel
programming Is

Choose one, maybe

Multicore programming for the masses

Goal: a shared-memory model that
» is easy to learn and use
» supports irregular problems

» values correctness, ease-of-use

Race Conditions

// move $5 // move $10
acct[x] = acct[x] - 5; acct[i] = acct[i] - 10;
acctly] = acctly] + 5; acct[j] = acct[j] + 10;

Explicit Locks (7)

lock(acct[x]); lock(acct[i]);
lock(acctlyl); lock(acct[jl);

// move $5 // move $10

acct[x] = acct[x] - 5; acct[i] = acct[i] - 10;

acctly]l = acctly] + 5; acct[j] = acct[j] + 10;
unlock(acct[yl); unlock(acct[jl);
unlock(acct[x]); unlock(acct[i]);

Atomic Blocks

atomic {
// move
acct [x]
acct[y]
t

$5
= acct[x] - 5;
= acctly] + 5;

atomic {
// move $10
acct[i] = acct[i] - 10;
acct[j] = acct[j] + 10;
+

Atomic Blocks

while (acct[x] >= 5) {
// move $5
acct[x] = acct[x] - 5;
acctly]l = acctly] + 5;
}

Atomic Blocks

while (acct[x] >= 5) {
// move $5
acct[x] = acct[x] - 5;
acctly]l = acctly] + 5;
}

bool loopl;
do {
atomic {
loopl = acct[x] >= 5;
if (loopl) {
// move $5
acct[x] = acct[x] - 5;
acct[y] = acctlyl] + 5;
+

+
} while(loopl);

Cooperative Multithreading (for Uniprocessors)

» Only one thread runs at a time.

» yield switches threads; no preemption.

Cooperative
Multithreading

® Only one thread runs
at a time

® yield statements
switch threads

Thread A

Thread B

Cooperative

while (acct[x] >= 5) {
// move $5
acct[x] = acct[x] - 5;
acctly] = acctly] + 5;

while (acct[i] >= 10) {

+

// move
acct[i]
acct[j]

$10
= acct[i] - 10;
= acct[j] + 10;

Cooperative

while (acct[x] >= 5) { while (acct[i] >= 10) {
// move $5 // move $10
acct[x] = acct[x] - 5; acct[i] = acct[i] - 10;
acctly]l = acctly] + 5; acct[j] = acct[j] + 10;
+ +
while (acct[x] >= 5) { while (acct[i] >= 10) {
// move $5 // move $10
acct[x] = acct[x] - 5; acct[i] = acctl[i] - 10;
acctly]l = acctly] + 5; acct[j] = acctl[j] + 10;
yield; ylield;
+ +

OCM: A Model for Parallel Computation

» CM code = OCM code

» System may run threads simultaneously

» Fundamental guarantee: CM-Serializability

» Result is consistent with some uniprocessor
CM execution

Observationally Cooperative Multithreading

while (acct[x] >= 5) {

// move
acct [x]
acct [yl
yield;

$5

acct[x] - 5;
acctly] + 5;

while (acct[i] >= 10) {

// move
acct[i]
acct[j]
yield;

$10
= acct[i] - 10;
= acct[j]l + 10;

Let’s Try It...

A Parallel Perspective on yield

Threads primarily execute in isolation.

When a thread yields:
» Its changes are visible to the world

» Changes in the world become visible to it

Advantages of OCM

» We can reason sequentially between yields
» Fewer opportunities for deadlock

» Implementation-agnostic
P g

That’s nice...
But how do you
implement it?

You don’t need to
care.
‘It just works.”

You don’t need to
care.
‘It just works.”

\n “\QOV

What would
programmers do
without OCM?

What would
programmers do
without OCM?

Classic idea: Locks

Implementing OCM with Locks

release_locks();
yield; —
acquire_locks();

» Need locks for data accessed through next yield

» Lock inference
» Programmer annotations

» OCM is responsible for avoiding deadlock.

» Optimizations: Lazy Acquire, Eager Release

Newer idea:
Atomic Transactions

Implementing OCM with STM

end_transaction();
yield; —
begin_transaction() ;

» One subtlety: “unreturning’ from functions

Unreturning from Functions

void caller() {
callee();

yleld;
¥

void callee() {
yield;

Unreturning from Functions

void caller() { void callee() {
callee(); yield;
yield; by

+

Solutions:

» Access the stack through STM

» Or, save and restore stack segments

Proof of Concept Implementations

» Uniprocessor CV

» Pthreads 4+ Big Lock

» Pthreads + Big Lazy Lock

» Explicit Locks

» Lua (proxy objects)
» C subset (lock inference)
» Software Transactional Memory
» Lua (TinySTM)
» C++ (wrapper objects, TinySTM/TL2)

Example: Dijkstra's Dining Philosophers

Traditional Philosophers

philosopher(int i):
for iter in (1..ITERS):
think() ;

yieldUntil (isFreel[i] && isFree[(i+1) % NI1);

isFreel[i] = false;
isFree[(i+1) % N] = false;
yleld;

eat();

isFree[i] = true;

isFree[(i+1) % N] = true;
yield;

True OCM Philosophers

philosopher(int i):
for iter in (1..ITERS):
think () ;
ylield;

eat (fork[i], fork[(i+1) % NI1);
yield,;

Speedup: Traditional & True OCM Philosophers

45

Lua, Locks
y4

40

35

1}
1

C, Lock Inference),

30
o 25
=
o
]
3
A 20
15 . ;
[
/% & Lazy Global Lock
V' i K . 0,4-0",4-0
10 ’,o-*o-(w o

Lua, STM (TinySTM)

Global Lock

©0-0-0 00-© 0 0-0-0

12 18 24 30

Number of Cores

36 42 48

0O ©6

Speedup

35+

30+

25+
20+

15+

10

A

2.0
184
164
141
121
11

Lazy Global
Lock

A/ C,STM

3 N—--‘a"b,jul—_un
°.I.I.’°llllln

of‘°'°-°.°,o‘°
ol Lug, STM

(TinySTM)
Lazy Global Lock Global Lock

909 OTO-O “O-T*O\ﬁﬂ'ﬂ

0 36 42 48

""" L L
12 18 24

Number of Cores

Debugging and Profiling

» OCM guarantees CM-Serializability.

» Run in parallel, record serial equivalent
» 'Replay’ the trace in uniprocessor CM.

» Implemented in 2 proof-of-concept
implementations.

Conclusion

» OCM appears promising
» Simple programming model
» Supports “irregular’ problems
» Debugging support
» Many possible implementations

» Future Work

» Larger benchmark suite

» More examples

» Better/different OCM implementations
» Study “ease of programming’

We'd love your help!

