COMP 322: Fundamentals of
Parallel Programming

Lecture 1: The What and Why of
Parallel Programming

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar®@rice.edu

COMP 322 Lecture 1 10 January 2011

Scope of Course

* Fundamentals of parallel programming

— Task creation and termination, computation graphs, scheduling theory,
futures, forall parallel loops, barrier synchronization (phasers), isolation &
mutual exclusion, task affinity, bounded buffers, data flow, threads, GUI
applications, data races, deadlock, memory models

* Introduction to parallel algorithms

* Habanero-Java (HJ) language, developed in the Habanero Multicore
Software Research project at Rice

* Abstract executable performance model for HJ programs
* Java Concurrency
* Written assignments

* Programming assignments
— Abstract metrics
— Real parallel systems (8-core Intel, Rice SUG@R system)

* Beyond HJ and Java: introduction to CUDA and MPI

2 COMP 322, Spring 2011 (V.Sarkar) %\?3

Acknowledgments for Today’s Lecture

* CS 194 course on "Parallel Programming for Multicore” taught
by Prof. Kathy Yelick, UC Berkeley, Fall 2007

—http://www.cs.berkeley.edu/~yelick/cs194f07/
* COMP 322 Lecture 1 handout

3 COMP 322, Spring 2011 (V.Sarkar))

What is Parallel Computing?

* Parallel computing: using multiple processors in parallel to solve
problems more quickly than with a single processor, or with less
energy

* Examples of parallel machines

— A computer Cluster that contains multiple PCs with local memories
combined together with a high speed network

— A Symmetric Multi-Processor (SMP) that contains multiple
processor chips connected to a single shared memory system

— A Chip Multi-Processor (CMP) contains multiple processors (called
cores) on a single chip, also called Multi-Core Computers

* The main motivation for parallel execution historically came
from the desire for improved performance

— Computation is the third pillar of scientific endeavor, in addition to
Theory and Experimentation

* But parallel execution has also now become a ubiquitous
necessity due to power constraints, as we will see

4 COMP 322, Spring 2011 (V.Sarkar))

What is Parallel Programming?

* Specification of operations Task A Task B
that can be executed in
parallel

* A parallel program is
decomposed into sequential
subcomputations called tasks

* Parallel programming

constructs define task e
creation, termination, and
interaction et
Schematic of a Dual-core
Processor

5 COMP 322, Spring 2011 (V.Sarkar))

Example of a Sequential Program:
Computing the sum of array elements

int sum = O; Computation Graph
for (int i=0 ; i < X.length ; i++) 0
sum += X[i]: 1 X[O]
X[1]

Observations:

* The decision to sum up the
elements from left to right was

arbitrary d_) /

* The computation graph shows
that all operations must be }
executed sequentially

COMP 322, Spring 2011 (V.Sarkar))

Async and Finish Statements for Task
Creation and Termination

async S finish S
* Creates a new child task that = Execute S, but wait until all
executes statement S (transitively) spawned asyncs

in S's scope have terminated.

» Implicit finish between start
and end of main program

* Parent task immediately
continues to statement following

the async

//Task T,(Parent) T, T,
finish { //Begin finish --------------

async } L asglnc

STMT1; //T,(Child)

STMTI1 STMT2
//Continuation (
STMT2 ; //T, terminate Q
} //Continuation //End finish _ _ _________"Z% 5= -
STMT3; //T, STMT3

7 COMP 322, Spring 2011 (V.Sarkar) %

Example of a Parallel Program:
Array Sum with two tasks

// Start of Task T1 (main program)
suml = O; sum2 = O; Computation Graph

// Assume that suml & sum2 are fields // Start of Task T1 (main program)

finish {
// Compute suml (lower half) and sum2 °
// (upper half) in parallel e @
async for (int i=0; i < X.length/2; i++)
suml += X[i]; // Task T2 Q
async for (int i=X.length/2; i < X.length; i++)
sum2 += X[i]: // Task T3 /[Continuation of Task T1

}
//Task T1 waits for Tasks T2 and T3

int sum = suml + sum2; // Continuation of Task T1

8 COMP 322, Spring 2011 (V.Sarkar))

Why Parallel Computing Now?

* Researchers have been using parallel computing for
decades:

— Mostly used in computational science and engineering
—Problems too large to solve on one computer; use 100s or
1000s

* There have been higher level courses in parallel computing
(COMP 422, COMP 522) at Rice for several years

* Many companies in the 80s/90s "bet” on parallel computing
and failed

— Sequential computers got faster too quickly for there to be a
large market for specialized parallel computers

* Why is Rice adding a 300-level undergraduate course on
parallel programming now?

—Because the entire computing industry has bet on parallelism

—There is a desperate need for all computer scientists and
practitioners to be aware of parallelism

9 COMP 322, Spring 2011 (V.Sarkar))

Number of processors used in Top 500
computers from 1993 to 2010

Number of Processors Share Over Time

1993-2010
500
128k- A
64k-128k
B 32k-64k
400 B 16k-32k
B sk-16k
B 4k-8k
«» 300 B 2049-4096
& M 1025-2048
Q M 513-1024
Y 200 M 257-512
Hl 129-256
B 65-128
B 33-64
100
17-32
M o-16
o M 5-8 v
M < IO ONNODOOOO -~ AN MWL ONN 0O O
OO0 OO0 OO O OO O OO OO oOoo +H
OO OO0 OO0 O OO O OO OO OO O
I - - A " A " AN AN AN ANAN AN AN AN AN
OOV O OVOOVOOOVOOLOOVOOOO OV O Source:
O OO0 OO0 O0O0DO0DO0DL0DO0ODOLDDLOOOO OO o
TOP Rel
OFS00 Releases www.top500.0rg

-

£8

10 COMP 322, Spring 2011 (V.Sarkar)

Technology Trends: Microprocessor
Capacity

1975 1980 1985 1990 1995

4
10M Micro 500
(transistors) ‘ s000 mips)
™M Pentium” 25
i d Processor
80486
100K @ 180386 10
‘ BO286
10K 3086 01
" ‘BU 80
4004 0.01

2X transistors/Chip every 1-2
years

Called “"Moore's Law”

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that
the transistor density of
semiconductor chips would
double roughly every 1-2
years

Slide source: Jack Dongarra

11 COMP 322, Spring 2011 (V.Sarkar)

Microprocessor Transistors and Clock Rate

Growth in transistors per chip Increase in clock rate
100,000,000 - 1000 3
: . /
10,000,000 5 vy
; o yRIONO 100 .
Kentium ~
1 *
p 1,000,000 5 ‘?:‘ é
2 $i03%* § 103
= 100,000 . : o’RZ(I’DRm é
: s
i
10,000 3 1
114004 1
1,000 — 0.1 I : :
1970 1975 1980 1965 1990 195 2000 2005 1970 1960 1960 2000
Year Year

Old view: why bother with parallel programming for increased
performance? Just wait a year or two..

12 COMP 322, Spring 2011 (V.Sarkar) A

10000

~
N
£
o
~
2
>
=
n
<
Q
/a)
e
Q
S
()
a.

Scaling clock speed (business as usual) wil

Power Wall

—
@
@
o

Nuclear ——p ;S

—
o

Reactor
8086 Hot Plate =

#1004
8008

080

P6

85 Pentium®
28600

i

1970

1980 1990 2000
Year

COMP 322, Spring 2011 (V.Sarkar)

2010

not work

Source: Patrick
Gelsinger, Intel®

Parallelism Saves Power

Power = (Capacitance) * (Voltage)? * (Frequency)

=>» Power a (Frequency)3

Baseline example: single 1GHz core with power P

Option A: Increase clock frequency to 26Hz = Power = 8P

Option B: Use 2 cores at 1 GHz each = Power = 2P

* Option B delivers same performance as Option A with 4x less
power ... provided software can be decomposed to run in parallel!

14 COMP 322, Spring 2011 (V.Sarkar) &

Revolution is Happening Now

10,000,000

* Chip density is
continuing to increase
~2x every 2 years 17000.009

—Clock speed is not

—Number of processor 100.000
cores may double
instead

* There is little
instruction-level
parallelism (ILP) to be
found by hardware

10,000

1,000

100

* Parallelism must be
exposed to and

managed by software 10
] P > BT ist (000)
Source: Intel, Microsoft (Sutter) ! & | o Clock Speed (MHz)
and Stanford (Olukotun, Hammond) ol =l
] i |

0
15 ¢ 1970 1975 1980 1985 1990 1995 2000 2005 2010

Implications

These arguments are no long theoretical

* All major processor vendors are producing multicore chips
—Every machine will soon be a parallel machine
— All programmers will be parallel programmers???

* Some may eventually be hidden in libraries, compilers, and high
level languages

—But a lot of work is needed to get there
* Big open questions:
—What will be the killer applications for multicore machines?

—How should the chips be designed?
—How will they be programmed?

16 COMP 322, Spring 2011 (V.Sarkar) &,

