
COMP 322: Fundamentals of
Parallel Programming

Lecture 11: Abstract vs Real
Performance, Work-sharing andWork-

stealing schedulers
Vivek Sarkar

Department of Computer Science
Rice University

vsarkar@rice.edu

COMP 322 Lecture 11 7 February 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  Yi Guo. A Scalable Locality-aware Adaptive Work-stealing

Scheduler for Multi-core Task Parallelism. PhD thesis,
Department of Computer Science, Rice University, August 2010.

•  Jun Shirako for microbenchmark results.
•  Lecture 11 handout

COMP 322, Spring 2011 (V.Sarkar)	

3

Abstract vs. Real Performance Metrics"
•  Abstract performance metrics are idealized

— No penalty for fine-grained tasks and synchronization

•  Many sources of overhead in practice
— Spawn overhead
— Join overhead
— IEF-Join overhead
— Isolation overhead
— Cache overheads (not discussed in handout)
— . . .

COMP 322, Spring 2011 (V.Sarkar)	

4

Scheduling HJ tasks on processors in a
parallel machine (Lecture 2)"

•  HJ runtime creates a small number of worker threads, typically
one per core

•  Workers push async’s/continuations into a logical work queue
•  when an async operation is performed
•  when an end-finish operation is reached

•  Workers pull task/continuation work item when they are idle

COMP 322, Spring 2011 (V.Sarkar)	

5

Work-Sharing vs. Work-Stealing
Scheduling Paradigms"

•  Work-Sharing
— Busy worker re-distributes the task eagerly
— Easy implementation through global task pool
— Access to the global pool needs to be

synchronized: scalability bottleneck

•  Work-Stealing
— Busy worker pays little overhead to enable

stealing
— Idle worker steals the tasks from busy workers
— Distributed task pools
— Better scalability

•  Two Work-Stealing policies
— When Τa spawns Τb, the processor will

–  start working on Τb first (work-first policy)
–  stay on Τa , making Τb available for execution

by another processor (help-first policy)

w1 w2 w3 w4

push
task

pull
task

w1 w2 w3

work-sharing

work-stealing

5

steal task

COMP 322, Spring 2011 (V.Sarkar)	

6

Specifying Scheduling Policies in HJ"
•  Work-sharing is the default. Normal compilation and execution

with hjc and hj commands uses the work-sharing policies
— Work-sharing supports all parallel constructs in HJ

•  Work-stealing can be enabled by an option
— “hjc –rt w” compiles a program for work-stealing scheduling with the

work-first policy
— “hjc –rt h” compiles a program for work-stealing scheduling with the

help-first policy
— Work-stealing only supports finish, async, and isolated statements

–  Work-stealing support for future get() and phasers is in
progress

•  In all cases, “hj –places 1:n” creates n workers in 1 place
— You will learn about places later in the course
— Caveat: the work-sharing scheduler creates additiona threads if

some worker threads get blocked

COMP 322, Spring 2011 (V.Sarkar)	

7

Context Switch"
•  Context Switch occurs when the processor

— Deviates execution from the serial depth-first schedule, AND
— does not follow continue edges

7

•  Two examples of context switches:
  Case 1: …..v12 v13 v14  context switch  v18 …..
  Case 2: v1 v2 v3 v6 v9  context switch  v4 v5 ….

COMP 322, Spring 2011 (V.Sarkar)	

8

Context Switch (cond.)"
• Why are context switches expensive?

— Execution context needs special handling
— Cache may be cold

• When does a context switch occur?
— In work-first policy, every steal will trigger a
context switch of the victim

— In help-first policy, every task is executed after
a context switch

8

COMP 322, Spring 2011 (V.Sarkar)	

9

Iterative Fork-Join Microbenchmark"

9

•  k = number of tasks
•  ts(k) = sequential time
•  t1

wf(k) = 1-worker time for work-stealing with work-first
policy

•  t1
hf(k) = 1-worker time for work-stealing with help-first

policy
•  t1

ws(k) = 1-worker time for work-sharing
•  Java-thread(k) = create a Java thread for each async

finish { //startFinish
 for (int i=1; i<k; i++)
 async Ti; // task i
 T0; //task 0
}

COMP 322, Spring 2011 (V.Sarkar)	

10

Table 1: Fork-Join Microbenchmark Measurements
(execution time in micro-seconds)"

COMP 322, Spring 2011 (V.Sarkar)	

11

Adding a Threshold Test for Efficiency"
void fib (int n) {
 if (n<2) {
 . . .
 } else {
 finish {
 async fib(n-1);
 async fib(n-2);
 }
 }
}

void fib (int n) {
 if (n<2) {
 . . .
 } else if (n > THRESHOLD) { //

PARALLEL VERSION
 finish {
 async fib(n-1);
 async fib(n-2);
 }
 }
 else { // SEQUENTIAL VERSION
 fib(n-1); fib(n-2);
 }
}

COMP 322, Spring 2011 (V.Sarkar)	

12

seq clause in HJ async statement"

void fib (int n) {
 if (n<2) {
 . . .
 } else {
 finish {
 async seq(n <= THRESHOLD) fib(n-1);
 async seq(n <= THRESHOLD) fib(n-2);
 }
 }
}

