COMP 322: Fundamentals of
Parallel Programming

Lecture 11: Abstract vs Real
Performance, Work-sharing andWork-

stealing schedulers

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar®@rice.edu

COMP 322 Lecture 11 7 February 2011

Acknowledgments for Today’s Lecture

* Yi Guo. A Scalable Locality-aware Adaptive Work-stealing
Scheduler for Multi-core Task Parallelism. PhD thesis,
Department of Computer Science, Rice University, August 2010.

* Jun Shirako for microbenchmark results.
* Lecture 11 handout

2 COMP 322, Spring 2011 (V.Sarkar) &

Abstract vs. Real Performance Metrics

* Abstract performance metrics are idealized
—No penalty for fine-grained tasks and synchronization

* Many sources of overhead in practice
— Spawn overhead
—Join overhead
—IEF-Join overhead
—Isolation overhead
—Cache overheads (not discussed in handout)

3 COMP 322, Spring 2011 (V.Sarkar))

Scheduling HJ tasks on processors in a
parallel machine (Lecture 2)

Logical Work Queue

(async’s & continuations) Local variables are
private to each task
push pull
work work
Workers w1 w2 w3 w4

Static & instance fields are shared among tasks

* HJ runtime creates a small number of worker threads, typically
one per core

* Workers push async's/continuations into a logical work queue

* when an async operation is performed
* when an end-finish operation is reached
* Workers pull task/continuation work item when they are idle

4 COMP 322, Spring 2011 (V.Sarkar) &

Work-Sharing vs. Work-Stealing
Scheduling Paradigms

* Work-Sharing

— Busy worker re-distributes the task eagerly pull
— Easy implementation through global task pool g
— Access to the global pool needs to be pus
synchronized: scalability bottleneck tas >
* Work-Stealing ((((
— Busy worker pays little overhead to enable Wi W2 W Wa
stealing work-sharing
— Idle worker steals the tasks from busy workers steal task
— Distributed 1'<Ts.k pools N N
— Better scalability
* Two Work-Stealing policies (< <
— When T, spawns T,, the processor will %, ¥, ¥,

- start working on T, first (work-first policy)

- stay on T, , making T, available for execution
by another processor (help-first policy)

work-stealing

° COMP 322, Spring 2011 (V.Sarkar) %

Specifying Scheduling Policies in HJ

* Work-sharing is the default. Normal compilation and execution
with hjc and hj commands uses the work-sharing policies

— Work-sharing supports all parallel constructs in HJ

* Work-stealing can be enabled by an option

—"hjc -rt w” compiles a program for work-stealing scheduling with the
work-first policy

—"hjc -rt h" compiles a program for work-stealing scheduling with the
help-first policy

—Work-stealing only supports finish, async, and isolated statements
- Work-stealing support for future get() and phasers is in
progress
* In all cases, “hj -places 1:n" creates n workers in 1 place
—You will learn about places later in the course

—Caveat: the work-sharing scheduler creates additiona threads if
some worker threads get blocked

6 COMP 322, Spring 2011 (V.Sarkar) &

Context Switch

* Context Switch occurs when the processor
—Deviates execution from the serial depth-first schedule, AND
—does not follow continue edges

— Continue edge —_— Spawnedge —------ - Join edge

« Two examples of context switches:
> Case 1: ...vl2 v13 v14 5 context switch 2> v18 ...
> Case 2: vl v2 v3 v6 v9 = context switch 2> v4 v5 ...

! COMP 322, Spring 2011 (V.Sarkar) 7 @ﬁ‘

Context Switch (cond.)

* Why are context switches expensive?
—Execution context needs special handling
—Cache may be cold

* When does a context switch occur?

—In work-first policy, every steal will trigger a
context switch of the victim

—In help-first policy, every task is executed after
a context switch

8 COMP 322, Spring 2011 (V.Sarkar) 8 Z\d

lterative Fork-Join Microbenchmark

finish { //startFinish
for (int i=1; i<k; i++)
async Ti; // task i
TO; //task O

}

k = number of tasks
t,(k) = sequential time

t,*f(k) = 1-worker time for work-stealing with work-first
policy

t,M(k) = 1-worker time for work-stealing with help-first
policy

t,%s(k) = 1-worker time for work-sharing

Java-thread(k) = create a Java thread for each async

COMP 322, Spring 2011 (V.Sarkar) 9 %\d

10

Table 1: Fork-Join Microbenchmark Measurements
(execution time in micro-seconds)

k | ts(k) | t¥7 (k) | £ (k) | t¥s(k) | Java-thread(k)
1| 011] o021] 0.22
2| 022] 044] 280
4] 044] 088] 2095
8| 090| 1.96| 3.92 335 3,600
16 | 1.80 | 379 | 6.28
32| 360 | 7.15]| 10.37
64 | 717 | 1459 | 19.61
128 | 14.47 | 2834 | 36.31 | 2,600 63,700
256 | 28.93 | 56.75 | 73.16
512 | 57.53 | 114.12 | 148.61
1024 | 114.85 | 270.42 | 347.83 | 22,700 768,000

COMP 322, Spring 2011 (V.Sarkar)

Adding a Threshold Test for Efficiency

void fib (int n) { void fib (int n) {
if (n<2) { if (n<2) {
} else { } else if (n > THRESHOLD) { //
- PARALLEL VERSION
finish {
finish {

async fib(n-1);
_ async fib(n-1);
async fib(n-2); ,
async fib(n-2);

}
}

else { // SEQUENTIAL VERSION
fib(n-1); fib(n-2);
}

SN
2R

11 COMP 322, Spring 2011 (V.Sarkar) D

seq clause Iin HJ async statement

async seq(cond) <stmt> = if (cond) <stmt> else async <stmt>

void fib (int n) {
if (n<2) {
} else {
finish {
async seq(n <= THRESHOLD) fib(n-1):
async seq(n <= THRESHOLD) fib(n-2):

12 COMP 322, Spring 2011 (V.Sarkar))

