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Announcements!
•  Homework 4 due by 5pm on Wednesday, Feb 16th 

— We will try and return graded homeworks by Feb 23rd 

•  Guest lecture on Bitonic Sort by John Mellor-Crummey on 
Friday, Feb 18th 

•  Feb 23rd lecture will be a Midterm Review 
•  No lecture on Friday, Feb 25th since midterm is due that day 

— Midterm will be a 2-hour take-home written exam 
–  Closed-book, closed-notes, closed-computer 

— Will be given out at lecture on Wed, Feb 23rd 
— Must be handed in by 5pm on Friday, Feb 25th 
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Acknowledgments for Todayʼs Lecture!
•  [1] “X10: an object-oriented approach to non-uniform 

computing”.  Philippe Charles et al. OOPSLA 2005. 
•  [4] Knowing When to Parallelize: Rules-of-Thumb based on User 

Experiences. Cherri Pancake. 
— Source for seismic imaging example 

•  [5] Phasers: a unified deadlock-free construct for collective 
and point-to-point synchronization. Jun Shirako et al. ICS ’08 

•  [6] Barry Wilkinson and Michael Allen. Parallel Programming: 
Techniques and Applications Using Networked Workstations and 
Parallel Computers (2nd Edition). Prentice-Hall, 2004. 
— Source for figures related to pipeline parallelism 

•  Handout for Lectures 14 and 15 
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Point-to-Point Synchronization: Example 1!
1.  finish { // Expanded finish-for-async version of forall  
2.    for (point[i] : [1:m])  
3.      async { 
4.        doPhase1(i); 

    // Iteration i waits for i-1 and i+1 to complete Phase 1 
5         doPhase2(i); 
6       } 
7   } 

•  Need synchronization where iteration i only waits for iterations 
i−1 and i+1 to complete their work in doPhase1() before it 
starts doPhase2(i)?  (Less constrained than a barrier) 
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Barrier & P-2-P Sync for 1-D 
Averaging!

doPhase1(i) 

doPhase2(i) 

 i=1   i=2    i=3    i=4    i=5    i=6    i=7    i=8 
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Point-to-point Synchronization: Example 2  
Pipeline Parallelism!

•  Seismic imaging pipeline example with three stages 
1. Simulation generates a sequence of results, one per time step.  
2. Rendering takes simulation results for one time step as input, and 

generates an image for that time step.  
3. Formatting image as input and outputs it into an animation sequence. 

•  Even though the processing is sequential for a single time step, 
pipeline parallelism can be exploited via point-to-point 
synchronization between neighboring stages 

Oregon State University C. M. Pancake (pancake@cs.orst.edu)

Pipeline Parallelism

! Scenario:  seismic imaging problem
! Data from different time steps used to generate series of images
! Job can be subdivided into phases which process the output of earlier phases
! Concurrency comes from overlapping the processing for multiple phases

! Key characteristic: only need to pass results one-way
! Can delay start-up of later phases so input will be ready

! Potential problems
! Assumes phases are computationally balanced  
! (or that processors have unequal capabilities)
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Fully Synchronous Parallelism

! Scenario:  atmospheric dynamics problem
! Data models atmospheric layer; highly interdependent in horizontal layers
! Same operation is applied in parallel to multiple data
! Concurrency comes from handling large amounts of data at once 

! Key characteristic: Each operation is performed on all (or most) data
! Operations/decisions depend on results of previous operations

! Potential problems
! Serial bottlenecks force other processors to “wait”
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General structure of a One-Dimensional 
Pipeline!

•  Assuming that the inputs d0, d1, . . . arrive sequentially, 
pipeline parallelism can be exploited by enabling task (stage) Pi 
to work on item dk−i when task (stage) P0 is working on item dk. 

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998
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Figure 5.6 Pipeline processing 10 data elements.
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Timing Diagram for One-Dimensional 
Pipeline!

•  Horizontal axis shows progress of time from left to right, and 
vertical axis shows which data item is being processed by which 
pipeline stage at a given time.  
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Complexity Analysis of One-
Dimensional Pipeline!

•  Assume  
— n = number of items in input sequence 
— P = number of pipeline stages 
— each stage takes 1 unit of time to process a single data item  

•  WORK = n×p is the total work for all data items 
•  CPL = n + p − 1 is the critical path length of the pipeline 
•  Ideal parallelism, PAR = WORK/CPL = np/(n + p − 1) 
•  Boundary cases 

— p = 1  PAR = n/(n + 1 – 1) = 1 
— n = 1  PAR = p/(1 + p – 1) 
— n = p  PAR = p/(2 – 1/p) 
— n ≫ p   PAR approaches p in the limit 
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Phasers: a unified construct for barrier 
and point-to-point synchronization!

•  Previous examples motivated the need for point-to-point 
synchronization 

•  HJ phasers were derived from the clock construct in X10, with 
extensions added for point-to-point synchronization 

•  A limited version of phasers was also added to the Java 7 
java.util.concurrent.Phaser library [3] 

•  Phaser capabilities 
— Unifies point-to-point and barrier synchronization 
— Supports dynamic parallelism i.e., the ability for tasks to drop 

phaser registrations and for new tasks to add new phaser 
registrations. 

— Deadlock freedom 
— Support for phaser accumulators (reductions that can be performed 

with phasers) 
— Support for streaming parallelism 



COMP 322, Spring 2011 (V.Sarkar)	

10 

Capability Hierarchy!

SINGLE = { signal, wait, single } 

SIG_WAIT = { signal, wait } 

SIG = { signal } WAIT = { wait } 
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•  Phaser allocation 
— phaser ph = new phaser(mode); 

–  Phaser ph is allocated with registration mode 
–  Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF) 

•  Registration Modes 
—  SIG 
— WAIT 
—  SIG_WAIT 
—  SINGLE 

•  Phaser registration 
— async phased (ph1<mode1>, ph2<mode2>, … ) <stmt> 

–  Spawned task is registered with ph1 in mode1, ph2 in mode2, … 
–  Child task’s capabilities must be subset of parent’s 
–  async phased <stmt> propagates all of parent’s phaser registrations to child 

•  Synchronization 
— next;  

–  Advance each phaser that current task is registered on to its next phase 
–  Semantics depends on registration mode 

Phaser Operations in Habanero Java  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A Simple Example!
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Semantics of next depends on registration mode!
SIG_WAIT: next = signal + wait!
SIG: next = signal (Donʼt wait for any task)!
WAIT: next = wait (Donʼt disturb any task)!

next operation!

signal!

wait!
next!

SIG! SIG_WAIT!SIG_WAIT! WAIT!

 A master task receives all signals and broadcasts a barrier completion!
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Left-Right Neighbor Synchronization 
Example for m=3!


