COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 14: Point-to-point Synchronization,
Pipeline Parallelism, Phasers

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

COMP 322 Lecture 14 14 February 2011

Announcements

* Homework 4 due by 5pm on Wednesday, Feb 16
—We will try and return graded homeworks by Feb 23rd

* Guest lecture on Bitonic Sort by John Mellor-Crummey on
Friday, Feb 18

* Feb 23 |ecture will be a Midterm Review

* No lecture on Friday, Feb 25™ since midterm is due that day
— Midterm will be a 2-hour take-home written exam
- Closed-book, closed-notes, closed-computer
— Will be given out at lecture on Wed, Feb 23rd
—Must be handed in by 5pm on Friday, Feb 25'™

2 COMP 322, Spring 2011 (V.Sarkar) &

Acknowledgments for Today’s Lecture

[1] "X10: an object-oriented approach to non-uniform
computing”. Philippe Charles et al. OOPSLA 2005.

[4] Knowing When to Parallelize: Rules-of-Thumb based on User
Experiences. Cherri Pancake.

— Source for seismic imaging example

[6] Phasers: a unified deadlock-free construct for collective
and point-to-point synchronization. Jun Shirako et al. ICS ‘08

[6] Barry Wilkinson and Michael Allen. Parallel Programming:
Techniques and Applications Using Networked Workstations and
Parallel Computers (2nd Edition). Prentice-Hall, 2004.

— Source for figures related to pipeline parallelism
Handout for Lectures 14 and 15

COMP 322, Spring 2011 (V.Sarkar) &),

Point-to-Point Synchronization: Example 1

1. finish { // Expanded finish-for-async version of forall

2 for (point[i] : [1:m])

3. async {

4 doPhasel(i):
// Iteration i waits for i-1 and i+1 to complete Phase 1
doPhase2(i):

}

N o O

}

* Need synchronization where iteration i only waits for iterations
i-1 and i+1 to complete their work in doPhasel() before it
starts doPhase2(i)? (Less constrained than a barrier)

=1 =2 =3 =4 =5 =6 =7 1=8
doPhase(i) @ ©®©@ ®© © © @ @ ©

22X 25 K K KK

doPhase2() @ @ ®© © ®© © @ ©

COMP 322, Spring 2011 (V.Sarkar) &),

Point-to-point Synchronization: Example 2
Pipeline Parallelism

Timestep Seismic simulation Volume Rendering timestep Formatting animation
Simulation e Application LIET Application sequence

* Seismic imaging pipeline example with three stages
1.Simulation generates a sequence of results, one per time step.

2.Rendering takes simulation results for one time step as input, and
generates an image for that time step.

3.Formatting image as input and outputs it into an animation sequence.

* Even though the processing is sequential for a single time step,
pipeline parallelism can be exploited via point-to-point
synchronization between neighboring stages

5 COMP 322, Spring 2011 (V.Sarkar)

General structure of a One-Dimensional
Pipeline

Input sequence

d9d8d7d6d5d4d3d2d1d0 > PO > Pl - P2 - P3 > P4 - P5 - P6 > P7 > P8 - P9

* Assuming that the inputs d,, d;, . . . arrive sequentially,
pipeline parallelism can be exploited by enabling task (stage) P,
to work on item d,_; when task (stage) P, is working on item d,.

6 COMP 322, Spring 2011 (V.Sarkar) &),

Timing Diagram for One-Dimensional

Pipeline
- p-1 , < h data items S
A Py dy | dy | dy | d3 | dyg | ds | dg
Py dy | dy | dy | ds | dy | d5 | dg | dq
'§1 P dy | dy | dy | d3 | dy | d5 | dg | d7 | dg
.'g P dy | dy | dy | d3 | dy | ds | dg | d7 | dg | dg
2 Ps dy | dy | dy | d3 | dy | d5 | dg | dy | dg | do
T";,- P, dy | di | dy | d3 | dy | ds | dg | d7 | dg | do
‘o Py dy | dy | dy | d3 | dy | ds | dg | d7 | dg | dg
a P, do | dy | dy | d3 | dy | ds | dg | dy | dg | do
P, dy | dy | dy | d3 | dy | ds | dg | dy | dg | do
v P do | dy | dy | dy | dy | ds | dg | d7 | dg | do

Time
* Horizontal axis shows progress of time from left to right, and
vertical axis shows which data item is being processed by which
pipeline stage at a given time.

7 COMP 322, Spring 2011 (V.Sarkar) &

Complexity Analysis of One-
Dimensional Pipeline

* Assume
—n = number of items in input sequence
—P = number of pipeline stages
—each stage takes 1 unit of time to process a single data item

* WORK = nxp is the total work for all data items
* CPL = n + p - 1 is the critical path length of the pipeline
* Ideal parallelism, PAR = WORK/CPL = np/(n + p - 1)
* Boundary cases
—p=12PAR=n/n+1-1)=1
—n =1 PAR = p/(1 + p - 1)
—n = p =2 PAR = p/(2 - 1/p)
—n > p = PAR approaches p in the limit

8 COMP 322, Spring 2011 (V.Sarkar) &

Phasers: a unified construct for barrier
and point-to-point synchronization

* Previous examples motivated the need for point-to-point
synchronization

* HJ phasers were derived from the clock construct in X10, with
extensions added for point-to-point synchronization

* A limited version of phasers was also added to the Java 7
java.util.concurrent .Phaser library [3]

* Phaser capabilities
—Unifies point-to-point and barrier synchronization

— Supports dynamic parallelism i.e., the ability for tasks to drop
phaser registrations and for new tasks to add new phaser
registrations.

— Deadlock freedom

— Support for phaser accumulators (reductions that can be performed
with phasers)

— Support for streaming parallelism

9 COMP 322, Spring 2011 (V.Sarkar) &

Capability Hierarchy

SINGLE = { signal, wait, single }

SIG_WAIT = { signal, wait }

TN

SIG = { signal } WAIT = { wait }

10 COMP 322, Spring 2011 (V.Sarkar) »@/x\l

Phaser Operations in Habanero Java

* Phaser allocation
— phaser ph = new phaser(mode);
- Phaser ph is allocated with registration mode
- Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)
* Registration Modes
— SI6
— WAIT
— SIG_WAIT
— SINGLE
* Phaser registration
— async phased (ph,;<mode;>, ph,<mode,>, ..) <stmt>
- Spawned task is registered with ph; in mode;, ph, in mode,, ..
- Child task’s capabilities must be subset of parent's
- async phased <stmt> propagates all of parent's phaser registrations to child

* Synchronization
— next;
- Advance each phaser that current task is registered on to its next phase
- Semantics depends on registration mode

11 COMP 322, Spring 2011 (V.Sarkar) »@l

A Simple Example

| finish {
ph = new phaser(); // Default mode is SIGWAIT
async phased (ph<SIG>){doA1Phasel (); next; doAlPhase2();}//Al (SIG mode)
async phased{doA2Phasel (); next; doA2Phase2();}//A2 (SIG.-WAIT mode)
async phased{doA3Phasel (); next; doA3Phase2();}//A3 (SIG.-WAIT mode)
async phased (ph<WAIT>){doA4Phasel (); next; doA4Phase2();}//A4 (WAIT mode)

=] O O s OO BN e

Listing 2: Simple example with four async tasks and one phaser

12 COMP 322, Spring 2011 (V.Sarkar)

next operation

Semantics of next depends on registration mode
SIG_WAIT: next = signal + wait
SIG: next = signal (Don’t wait for any task)
WAIT: next = wait (Don’t disturb any task)

SIG SIG_WAIT SIG_WAIT WAIT

next

13 COMP 322, Spring 2011 (V.Sarkar) D

Left-Right Neighbor Synchronization
Example for m=3

I

O =] C O i BN =

finish {
phaser phl = new phaser(); // Default mode is SIG.WAIT
phaser ph2 = new phaser(); // Default mode is SIG WAIT
phaser ph3 = new phaser(); // Default mode is SIG WAIT
async phased(phl<SIG>, ph2<WAIT>) { // i =1
doPhasel (1);
next; // Signals phl, and waits on ph2
doPhase2(1);
}
async phased(ph2<SIG>, phl<WAIT>, ph3<WAIT>) { // i = 2
doPhasel (2);
next; // Signals ph2, and waits on phl and ph3
doPhase2(2);
}
async phased(ph3<SIG>, ph2<WAIL>) { // 1 = 3
doPhasel (3);
next; // Signals ph3, and waits on ph2
doPhase2(3);
}
}

Listing 3: Extension of example in Listing |1 with three phasers for m = 3

14

COMP 322, Spring 2011 (V.Sarkar)

