
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 14: Point-to-point Synchronization,
Pipeline Parallelism, Phasers

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 14 14 February 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Announcements!
•  Homework 4 due by 5pm on Wednesday, Feb 16th

— We will try and return graded homeworks by Feb 23rd

•  Guest lecture on Bitonic Sort by John Mellor-Crummey on
Friday, Feb 18th

•  Feb 23rd lecture will be a Midterm Review
•  No lecture on Friday, Feb 25th since midterm is due that day

— Midterm will be a 2-hour take-home written exam
–  Closed-book, closed-notes, closed-computer

— Will be given out at lecture on Wed, Feb 23rd
— Must be handed in by 5pm on Friday, Feb 25th

COMP 322, Spring 2011 (V.Sarkar)	

3

Acknowledgments for Todayʼs Lecture!
•  [1] “X10: an object-oriented approach to non-uniform

computing”. Philippe Charles et al. OOPSLA 2005.
•  [4] Knowing When to Parallelize: Rules-of-Thumb based on User

Experiences. Cherri Pancake.
— Source for seismic imaging example

•  [5] Phasers: a unified deadlock-free construct for collective
and point-to-point synchronization. Jun Shirako et al. ICS ’08

•  [6] Barry Wilkinson and Michael Allen. Parallel Programming:
Techniques and Applications Using Networked Workstations and
Parallel Computers (2nd Edition). Prentice-Hall, 2004.
— Source for figures related to pipeline parallelism

•  Handout for Lectures 14 and 15

COMP 322, Spring 2011 (V.Sarkar)	

4

Point-to-Point Synchronization: Example 1!
1.  finish { // Expanded finish-for-async version of forall
2.  for (point[i] : [1:m])
3.  async {
4.  doPhase1(i);

 // Iteration i waits for i-1 and i+1 to complete Phase 1
5   doPhase2(i);
6   }
7   }

•  Need synchronization where iteration i only waits for iterations
i−1 and i+1 to complete their work in doPhase1() before it
starts doPhase2(i)? (Less constrained than a barrier)

COMP 322, Spring 2011 (V.Sarkar)!18

Barrier & P-2-P Sync for 1-D
Averaging!

doPhase1(i)

doPhase2(i)

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

COMP 322, Spring 2011 (V.Sarkar)	

5

Point-to-point Synchronization: Example 2  
Pipeline Parallelism!

•  Seismic imaging pipeline example with three stages
1. Simulation generates a sequence of results, one per time step.
2. Rendering takes simulation results for one time step as input, and

generates an image for that time step.
3. Formatting image as input and outputs it into an animation sequence.

•  Even though the processing is sequential for a single time step,
pipeline parallelism can be exploited via point-to-point
synchronization between neighboring stages

Oregon State University C. M. Pancake (pancake@cs.orst.edu)

Pipeline Parallelism

! Scenario: seismic imaging problem
! Data from different time steps used to generate series of images
! Job can be subdivided into phases which process the output of earlier phases
! Concurrency comes from overlapping the processing for multiple phases

! Key characteristic: only need to pass results one-way
! Can delay start-up of later phases so input will be ready

! Potential problems
! Assumes phases are computationally balanced
! (or that processors have unequal capabilities)

Ti me s t e p Se i s mi c
Si mul a t i o n

Vol ume Re nd e r i ng
Ap pl i ca t i o n

Fo r ma t t i ng
Ap pl i ca t i o n

t i me s t e p
i mage

s i mul at i on
r e s ul t s

ani mat i on
se qu e nc e

Timestep Seismic
Simulation

Volume Rendering
Application

Formatting
Application

t im e st e p
ima ge

simulation
results

animation
sequence

Oregon State University C. M. Pancake (pancake@cs.orst.edu)

Fully Synchronous Parallelism

! Scenario: atmospheric dynamics problem
! Data models atmospheric layer; highly interdependent in horizontal layers
! Same operation is applied in parallel to multiple data
! Concurrency comes from handling large amounts of data at once

! Key characteristic: Each operation is performed on all (or most) data
! Operations/decisions depend on results of previous operations

! Potential problems
! Serial bottlenecks force other processors to “wait”

I ni t i a l At mo s ph er i c Part i t i ons

At mos phe r i c Mode l i ng Ap pl i c at i on

Re s ul t i n g Pa rt i t i on s

Initial Atmospheric Partitions

Atmospheric Modeling Application

Resulting Partitions

COMP 322, Spring 2011 (V.Sarkar)	

6

General structure of a One-Dimensional
Pipeline!

•  Assuming that the inputs d0, d1, . . . arrive sequentially,
pipeline parallelism can be exploited by enabling task (stage) Pi
to work on item dk−i when task (stage) P0 is working on item dk.

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998

P0

P4

P3

P5

P2

P1

Time

Figure 5.6 Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0 P0 P1 P2 P3 P4 P5

(a) Pipeline structure

(b) Timing diagram

P8

P7

P9

P6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

P7P6 P8 P9

Input sequence

p " 1 n

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8

d0 d1 d2 d3 d4 d5 d6 d7

d0 d1 d2 d3 d4 d5 d6

COMP 322, Spring 2011 (V.Sarkar)	

7

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998

P0

P4

P3

P5

P2

P1

Time

Figure 5.6 Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0 P0 P1 P2 P3 P4 P5

(a) Pipeline structure

(b) Timing diagram

P8

P7

P9

P6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

P7P6 P8 P9

Input sequence

p " 1 n

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8

d0 d1 d2 d3 d4 d5 d6 d7

d0 d1 d2 d3 d4 d5 d6

Timing Diagram for One-Dimensional
Pipeline!

•  Horizontal axis shows progress of time from left to right, and
vertical axis shows which data item is being processed by which
pipeline stage at a given time.

p
pi
pe

lin
e

st
ag

es

n data items

COMP 322, Spring 2011 (V.Sarkar)	

8

Complexity Analysis of One-
Dimensional Pipeline!

•  Assume
— n = number of items in input sequence
— P = number of pipeline stages
— each stage takes 1 unit of time to process a single data item

•  WORK = n×p is the total work for all data items
•  CPL = n + p − 1 is the critical path length of the pipeline
•  Ideal parallelism, PAR = WORK/CPL = np/(n + p − 1)
•  Boundary cases

— p = 1  PAR = n/(n + 1 – 1) = 1
— n = 1  PAR = p/(1 + p – 1)
— n = p  PAR = p/(2 – 1/p)
— n ≫ p  PAR approaches p in the limit

COMP 322, Spring 2011 (V.Sarkar)	

9

Phasers: a unified construct for barrier
and point-to-point synchronization!

•  Previous examples motivated the need for point-to-point
synchronization

•  HJ phasers were derived from the clock construct in X10, with
extensions added for point-to-point synchronization

•  A limited version of phasers was also added to the Java 7
java.util.concurrent.Phaser library [3]

•  Phaser capabilities
— Unifies point-to-point and barrier synchronization
— Supports dynamic parallelism i.e., the ability for tasks to drop

phaser registrations and for new tasks to add new phaser
registrations.

— Deadlock freedom
— Support for phaser accumulators (reductions that can be performed

with phasers)
— Support for streaming parallelism

COMP 322, Spring 2011 (V.Sarkar)	

10

Capability Hierarchy!

SINGLE = { signal, wait, single }

SIG_WAIT = { signal, wait }

SIG = { signal } WAIT = { wait }

COMP 322, Spring 2011 (V.Sarkar)	

11

•  Phaser allocation
— phaser ph = new phaser(mode);

–  Phaser ph is allocated with registration mode
–  Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

•  Registration Modes
—  SIG
— WAIT
—  SIG_WAIT
—  SINGLE

•  Phaser registration
— async phased (ph1<mode1>, ph2<mode2>, …) <stmt>

–  Spawned task is registered with ph1 in mode1, ph2 in mode2, …
–  Child task’s capabilities must be subset of parent’s
–  async phased <stmt> propagates all of parent’s phaser registrations to child

•  Synchronization
— next;

–  Advance each phaser that current task is registered on to its next phase
–  Semantics depends on registration mode

Phaser Operations in Habanero Java  

COMP 322, Spring 2011 (V.Sarkar)	

12

A Simple Example!

COMP 322, Spring 2011 (V.Sarkar)	

13

Semantics of next depends on registration mode!
SIG_WAIT: next = signal + wait!
SIG: next = signal (Donʼt wait for any task)!
WAIT: next = wait (Donʼt disturb any task)!

next operation!

signal!

wait!
next!

SIG! SIG_WAIT!SIG_WAIT! WAIT!

 A master task receives all signals and broadcasts a barrier completion!

COMP 322, Spring 2011 (V.Sarkar)	

14

Left-Right Neighbor Synchronization
Example for m=3!

