
COMP 322: Fundamentals of
Parallel Programming

Lecture 20: Java Concurrent Collections

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 20 9 March 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Announcements!
•  Graded midterm exams can be picked up from Amanda Nokleby

in Duncan Hall room 3137
•  Homework 5 will be sent out by tomorrow

— Homework 6 dates will be adjusted accordingly

COMP 322, Spring 2011 (V.Sarkar)	

3

Acknowledgments for Todayʼs Lecture!
•  Lecture 20 handout
•  “Java’s Collection Framework” slides by Rick Mercer
•  “Introduction to Concurrent Programming in Java”, Joe Bowbeer, David

Holmes, OOPSLA 2007 tutorial slides

— Contributing authors: Doug Lea, Brian Goetz

•  “Java Concurrency Utilities in Practice”, Joe Bowbeer, David Holmes,
OOPSLA 2007 tutorial slides
— Contributing authors: Doug Lea, Tim Peierls, Brian Goetz

COMP 322, Spring 2011 (V.Sarkar)	

4

Table 2: Examples of common isolated statement idioms
and their equivalent AtomicInteger implementations

(Corrected version)!

COMP 322, Spring 2011 (V.Sarkar)	

5

Java Collection Framework!
— The Java Collections Framework is a
unified architecture for representing and
manipulating collections. It has:
–  Interfaces: abstract data types (ADTs)

representing collections of objects
–  Implementations: concrete implementations of

the collection interfaces
–  Algorithms: methods that perform useful

computations, such as searching and sorting
These algorithms are said to be polymorphic: the same

method can be used on different implementations

COMP 322, Spring 2011 (V.Sarkar)	

6

Java Collection interfaces!

Queue

COMP 322, Spring 2011 (V.Sarkar)	

7

Implementations of Collection Interfaces !

— A collection class
–  implements an ADT as a Java class
–  implements all methods of the interface
–  selects appropriate instance variables
–  can be instantiated

— Some well-known collection classes used in
sequential Java programs
–  List: ArrayList, LinkedList, Vector
–  Map: HashMap, TreeMap
–  Set: TreeSet, HashSet

COMP 322, Spring 2011 (V.Sarkar)	

8

Working with Collections in a  
Parallel Program!

Different approaches:
1.  Restrict access to a single task  no modification needed
2.  Ensure that each call to a public method is

“synchronized” (isolated) with respect to other calls  excessive
synchronization

3.  Use specialized implementations that minimize serialization across
public methods  Java Concurrent Collections

•  We will focus on three java.util.concurrent classes that can be
used freely in HJ programs, analogous to Java Atomic Variables
—  ConcurrentHashMap, ConcurrentLinkedQueue, CopyOnWriteArraySet

•  Other j.u.c. classes can be used in standard Java, but not in HJ
—  ArrayBlockingQueue, CountDownLatch, CyclicBarrier, DelayQueue,

Exchanger, FutureTask, LinkedBlockingQueue, Phaser
PriorityBlockingQueue, Semaphore, SynchronousQueue

COMP 322, Spring 2011 (V.Sarkar)	

9

Java Collection interfaces!

Queue

COMP 322, Spring 2011 (V.Sarkar)	

10

The Java Map Interface!

— Map describes a type that stores a collection of key-value pairs
— A Map associates (maps) a key the it's value
— The keys must be unique

–  the values need not be unique
— Useful for implementing software caches (where a program stores

key-value maps obtained from an external source such as a
database), dictionaries, sparse arrays, …

— A Map is often implemented with a hash table (HashMap)
— Hash tables attempt to provide constant-time access to objects

based on a key (String or Integer)
–  key could be your Student ID, your telephone number, social

security number, account number, …
— The direct access is made possible by converting the key to an

array index using a hash function that returns values in the range
0 … ARRAY_SIZE-1, typically by using a (mod ARRAY_SIZE)
operation

COMP 322, Spring 2011 (V.Sarkar)	

11

Collisions!

— A good hash method
–  executes quickly
–  distributes keys equitably

— But you still have to handle collisions when two
keys have the same hash value
–  the hash method is not guaranteed to return a

unique integer for each key
example: simple hash method with "baab" and
"abba"

— There are several ways to handle collisions
–  Consider separate chaining hashing

COMP 322, Spring 2011 (V.Sarkar)	

12

321 365

0

1

2

An array of linked lists

An Array of LinkedList Objects  
(to support Collisions)!

COMP 322, Spring 2011 (V.Sarkar)	

13

java.util.concurrent.concurrentHashMap!
•  Implements ConcurrentMap sub-interface of Map
•  Allows read (traversal) and write (update) operations to overlap

with each other
•  Some operations are atomic with respect to each other e.g.,

— get(), put(), putIfAbsent(), remove()

•  Aggregate operations may not be viewed atomically by other
operations e.g.,
— putAll(), clear()

•  Expected degree of parallelism can be specified in
ConcurrentHashMap constructor
— ConcurrentHashMap(initialCapacity, loadFactor, concurrencyLevel)
— A larger value of concurrencyLevel results in less serialization, but

a larger space overhead for storing the ConcurrentHashMap

COMP 322, Spring 2011 (V.Sarkar)	

14

Concurrent Collection Performance!

COMP 322, Spring 2011 (V.Sarkar)	

15

Example usage of ConcurrentHashMap in
org.mirrorfinder.model.BaseDirectory!

COMP 322, Spring 2011 (V.Sarkar)	

16

Java Collection interfaces!

Queue

COMP 322, Spring 2011 (V.Sarkar)	

17

java.util.concurrent.ConcurrentLinkedQueue!
•  Queue interface added to java.util

–  interface Queue extends Collection and includes
 boolean offer(E x); // same as add() in Collection

 E poll(); // remove head of queue if non-empty
 E remove(o) throws NoSuchElementException;
 E peek(); // examine head of queue without removing it

•  Non-blocking operations
— Return false when full
— Return null when empty

•  Fast thread-safe non-blocking implementation of Queue
interface: ConcurrentLinkedQueue

COMP 322, Spring 2011 (V.Sarkar)	

18

Example usage of ConcurrentLinkedQueue in
org.apache.catalina.tribes.io.BufferPool15Impl!

COMP 322, Spring 2011 (V.Sarkar)	

19

Java Collection interfaces!

Queue

COMP 322, Spring 2011 (V.Sarkar)	

20

java.util.concurrent.CopyOnWriteArraySet!
•  Set implementation optimized for case when sets are not large,

and read operations dominate update operations in frequency
•  This is because update operations such as add() and remove()

involve making copies of the array
— Functional approach to mutation

•  Iterators can traverse array “snapshots” efficiently without
worrying about changes during the traversal.

COMP 322, Spring 2011 (V.Sarkar)	

21

Example usage of CopyOnWriteArraySet in
org.norther.tammi.spray.freemarker.DefaultTemplateLoader!

