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Announcements!
•  Graded midterm exams can be picked up from Amanda Nokleby 

in Duncan Hall room 3137 
•  Homework 5 will be sent out by tomorrow 

— Homework 6 dates will be adjusted accordingly 
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Acknowledgments for Todayʼs Lecture!
•  Lecture 20 handout 
•  “Java’s Collection Framework” slides by Rick Mercer 
•  “Introduction to Concurrent Programming in Java”, Joe Bowbeer, David 

Holmes, OOPSLA 2007 tutorial slides 

— Contributing authors: Doug Lea, Brian Goetz 

•  “Java Concurrency Utilities in Practice”, Joe Bowbeer, David Holmes, 
OOPSLA 2007 tutorial slides 
— Contributing authors: Doug Lea, Tim Peierls, Brian Goetz 
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Table 2: Examples of common isolated statement idioms 
and their equivalent AtomicInteger implementations 

(Corrected version)!
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Java Collection Framework!
— The Java Collections Framework is a 
unified architecture for representing and 
manipulating collections. It has:  
–  Interfaces: abstract data types (ADTs) 

representing collections of objects 
–  Implementations: concrete implementations of 

the collection interfaces 
–  Algorithms: methods that perform useful 

computations, such as searching and sorting 
These algorithms are said to be polymorphic: the same 

method can be used on different implementations 
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Java Collection interfaces!

Queue 



COMP 322, Spring 2011 (V.Sarkar)	

7 

Implementations of Collection Interfaces !

— A collection class 
–  implements an ADT as a Java class 
–  implements all methods of the interface 
–  selects appropriate instance variables 
–  can be instantiated 

— Some well-known collection classes used in 
sequential Java programs 
–  List: ArrayList, LinkedList, Vector 
–  Map: HashMap, TreeMap 
–  Set: TreeSet, HashSet  
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Working with Collections in a  
Parallel Program!

Different approaches: 
1.  Restrict access to a single task  no modification needed 
2.  Ensure that each call to a public method is 

“synchronized” (isolated) with respect to other calls  excessive 
synchronization 

3.   Use specialized implementations that minimize serialization across 
public methods  Java Concurrent Collections 

•  We will focus on three java.util.concurrent classes that can be 
used freely in HJ programs, analogous to Java Atomic Variables 
—  ConcurrentHashMap, ConcurrentLinkedQueue, CopyOnWriteArraySet 

•  Other j.u.c. classes can be used in standard Java, but not in HJ 
—  ArrayBlockingQueue, CountDownLatch, CyclicBarrier, DelayQueue, 

Exchanger, FutureTask, LinkedBlockingQueue, Phaser 
PriorityBlockingQueue, Semaphore, SynchronousQueue 
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Java Collection interfaces!

Queue 
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The Java Map Interface!

— Map describes a type that stores a collection of key-value pairs 
— A Map associates (maps) a key the it's value 
— The keys must be unique  

–  the values need not be unique 
— Useful for implementing software caches (where a program stores 

key-value maps obtained from an external source such as a 
database), dictionaries, sparse arrays, … 

— A Map is often implemented with a hash table (HashMap) 
— Hash tables attempt to provide constant-time access to objects 

based on a key (String or Integer) 
–  key could be your Student ID, your telephone number, social 

security number, account number, … 
— The direct access is made possible by converting the key to an 

array index using a hash function that returns values in the range 
0 … ARRAY_SIZE-1, typically by using a (mod ARRAY_SIZE) 
operation 
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Collisions!

— A good hash method  
–  executes quickly 
–  distributes keys equitably 

— But you still have to handle collisions when two 
keys have the same hash value 
–  the hash method is not guaranteed to return a 

unique integer for each key 
example: simple hash method with "baab" and 
"abba" 

— There are several ways to handle collisions 
–  Consider separate chaining hashing 
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An array of linked lists 

An Array of LinkedList Objects  
(to support Collisions)!
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java.util.concurrent.concurrentHashMap!
•  Implements ConcurrentMap sub-interface of Map 
•  Allows read (traversal) and write (update) operations to overlap 

with each other 
•  Some operations are atomic with respect to each other e.g., 

— get(), put(), putIfAbsent(), remove() 

•  Aggregate operations may not be viewed atomically by other 
operations e.g., 
— putAll(), clear() 

•  Expected degree of parallelism can be specified in 
ConcurrentHashMap constructor 
— ConcurrentHashMap(initialCapacity, loadFactor, concurrencyLevel) 
— A larger value of concurrencyLevel results in less serialization, but 

a larger space overhead for storing the ConcurrentHashMap 
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Concurrent Collection Performance!
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Example usage of ConcurrentHashMap in 
org.mirrorfinder.model.BaseDirectory!
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Java Collection interfaces!

Queue 
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java.util.concurrent.ConcurrentLinkedQueue!
•  Queue interface added to java.util 

–   interface Queue extends Collection and includes 
    boolean offer(E x); // same as add() in Collection 

 E poll(); // remove head of queue if non-empty 
 E remove(o) throws NoSuchElementException; 
 E peek(); // examine head of queue without removing it 

•  Non-blocking operations 
— Return false when full 
— Return null when empty 

•  Fast thread-safe non-blocking implementation of Queue 
interface: ConcurrentLinkedQueue 
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Example usage of ConcurrentLinkedQueue in 
org.apache.catalina.tribes.io.BufferPool15Impl!
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Java Collection interfaces!

Queue 
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java.util.concurrent.CopyOnWriteArraySet!
•  Set implementation optimized for case when sets are not large, 

and read operations dominate update operations in frequency 
•  This is because update operations such as add() and remove() 

involve making copies of the array 
— Functional approach to mutation 

•  Iterators can traverse array “snapshots” efficiently without 
worrying about changes during the traversal. 
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Example usage of CopyOnWriteArraySet in 
org.norther.tammi.spray.freemarker.DefaultTemplateLoader!


