
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 23: Places and Distributions

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 22 14 March 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  Lecture 23 handout
•  Supercomputing 2007 tutorial on “Programming using the

Partitioned Global Address Space (PGAS) Model” by Tarek El-
Ghazawi and Vivek Sarkar
— http://sc07.supercomputing.org/schedule/event_detail.php?

evid=11029

•  “Principles of Parallel Programming”, Calvin Lin & Lawrence
Snyder
— Includes resources available at

http://www.pearsonhighered.com/educator/academic/product/
0,3110,0321487907,00.html

COMP 322, Spring 2011 (V.Sarkar)	

3

Places in HJ"
here = place at which current task is executing
place.MAX_PLACES = total number of places (runtime constant)"

Specified by value of p in runtime option, -places p:w"

place.factory.place(i) = place corresponding to index i"
<place-expr>.toString() returns a string of the form “place(id=0)”"
<place-expr>.id returns the id of the place as an int"

async at(P) S"
•  Creates new task to execute statement S at place P"
•  async S is equivalent to async at(here) S"

Note that here in a child task for an async/future computation
will refer to the place P at which the child task is executing,
not the place where the parent task is executing

COMP 322, Spring 2011 (V.Sarkar)	

4

Listing 1: Batched Async-Finish Iterative
Averaging Example with Places"

•  Assume a –places 4:4 configuration with 4 places and 4 workers per places
for execution on a 16-core machine

•  Set tasks = 16 so as to create one async per worker
•  Use i % place.MAX_PLACES to compute destination place for each async
 Each subarray is processed at same place for successive iterations of
for-iter loop

COMP 322, Spring 2011 (V.Sarkar)	

5

Distributions"
•  A distribution maps points in a rectangular index space (region)

to places e.g.,
— i  place.factory.place(i % place.MAX_PLACES-1)

•  Programmers are free to create any data structure they choose
to store and compute these mappings

•  For convenience, the HJ language provides a predefined type,
hj.lang.dist, to simplify working with distributions

•  Some public members available in an instance d of hj.lang.dist
are as follows
— d.rank = number of dimensions in the input region for distribution d
— d.get(p) = place for point p mapped by distribution d. It is an error

to call d.get(p) if p.rank != d.rank.
— d.places() = set of places in the range of distribution d
— d.restrictToRegion(pl) = region of points mapped to place pl by

distribution d

COMP 322, Spring 2011 (V.Sarkar)	

6

Block Distribution"
•  dist.factory.block([lo:hi]) creates a block distribution over the

one-dimensional region, lo:hi.
•  A block distribution splits the region into contiguous subregions,

one per place, while trying to keep the subregions as close to
equal in size as possible.

•  Block distributions can improve the performance of parallel loops
that exhibit spatial locality across contiguous iterations.

•  Example in Table 1: dist.factory.block([0:15]) for 4 places

COMP 322, Spring 2011 (V.Sarkar)	

7

Block Distribution (contd)"
•  If the input region is multidimensional, then a block distribution

is computed over the linearized one-dimensional version of the
multidimensional region

•  Example in Table 2: dist.factory.block([0:7,0:1]) for 4 places

COMP 322, Spring 2011 (V.Sarkar)	

8

Distributed Parallel Loops"
•  Listing 2 shows the typical pattern used to iterate over an input

region r, while creating one async task for each iteration p at
the place dictated by distribution d i.e., at place d.get(p).

•  This pattern works correctly regardless of the rank and
contents of input region r and input distribution d i.e., it is not
constrained to block distributions

COMP 322, Spring 2011 (V.Sarkar)	

9

Cyclic Distribution"
•  dist.factory.cyclic([lo:hi]) creates a cyclic distribution over the

one-dimensional region, lo:hi.
•  A cyclic distribution “cycles” through places 0 … place.MAX

PLACES − 1 when spanning the input region
•  Cyclic distributions can improve the performance of parallel

loops that exhibit load imbalance
•  Example in Table 3: dist.factory.cyclic([0:15]) for 4 places

•  Example in Table 4: dist.factory.cyclic([0:7,0:1]) for 4 places

COMP 322, Spring 2011 (V.Sarkar)	

10

Figure 1: Cyclic distribution for a 8×8 sized
region (e.g., [1:8,1:8]) mapped on to 5 places"

0 1 2 3 4 0 1 2

3 4 0 1 2 3 4 0

1 2 3 4 0 1 2 3

4 0 1 2 3 4 0 1

2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2

3 4 0 1 2 3 4 0

1 2 3 4 0 1 2 3

COMP 322, Spring 2011 (V.Sarkar)	

11

Block-Cyclic Distribution"
•  dist.factory.blockCyclic([lo:hi],b) creates a block-cyclic

distribution over the one-dimensional region, lo:hi.
•  A block-cyclic distribution combines the locality benefits of the

block distri-bution with the load-balancing benefits of the
cyclic distribution by introducing a block size parameter, b.

•  The linearized region is first decomposed into contiguous blocks
of size b, and then the blocks are distributed in a cyclic
manner across the places.

•  Example in Table 5: dist.factory.blockCyclic([0:15]) for 4 place
with block size b = 2

COMP 322, Spring 2011 (V.Sarkar)	

12

Data Distributions"
•  In HJ, distributions are used to guide computation mappings for

affinity
•  The idea of distributions was originally motivated by mapping

data (array elements) to processors
•  e.g., Unified Parallel C language for distributed-memory parallel

machines (Thread = Place)

•  A pointer-to-shared can reference all locations in the
shared space, but there is data-thread affinity

Shared

Thread 0

Private 0

Thread
THREADS-1

Private 1 Private
THREADS-1

P
ar

ti
ti

on
ed

G

lo
ba

l
ad

dr
es

s
sp

ac
e

Thread 1

P
ri

va
te

Sp

ac
es

COMP 322, Spring 2011 (V.Sarkar)	

13

Examples of Shared and Private Data Layout:
Assume THREADS = 3
shared int x; /*x will have affinity to thread 0 */

shared int y[THREADS]; /* cyclic distribution by default */

int z; /* private by default */
will result in the layout:

Thread 0 Thread 1 Thread 2
x

z z z

y[0] y[1] y[2]

Shared and Private Data"

COMP 322, Spring 2011 (V.Sarkar)	

14

shared int A[4][THREADS];

will result in the following data layout:

Thread 0

A[0][0]

A[1][0]

A[2][0]

A[3][0]

A[0][1]

A[1][1]

A[2][1]

A[3][1]

A[0][2]

A[1][2]

A[2][2]

A[3][2]

Thread 1 Thread 2

Shared and Private Data"

