
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 25: Dataflow Programming and
Data-Driven Futures

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 25 21 March 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  Lecture 24 handout
•  Slides from Prof. Guang Gao, U.Delaware

— Topic-III-2-dataflow.pptx

•  Sagnak Tasirlar. Scheduling macro-dataflow programs on task-
parallel runtime systems. M.S. Thesis, Department of
Computer Science, Rice University, May 2011 (expected).

COMP 322, Spring 2011 (V.Sarkar)	

3

Announcements"
•  HW5 submission deadline is 5pm TODAY

COMP 322, Spring 2011 (V.Sarkar)	

4

Dataflow Computing"
•  Basic idea: replace machine instructions by a small set

of dataflow operators

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

⇒

COMP 322, Spring 2011 (V.Sarkar)	

5

x = a + b;
y = b * 7;
z = (x-y) * (x+y);

7
a b

x y
1 2

3 4

5 An operator executes when all its
input tokens are present; copies of
the result token are distributed to
the destination operators. No separate control flow

Figure 1: Example instruction sequence
and its dataflow graph"

COMP 322, Spring 2011 (V.Sarkar)	

6

Extending Futures with Dataflow Principles: 
HJ Data-Driven Futures (DDFs)"

ddfA = new DataDrivenFuture()
•  Allocate an instance of a DDF object (container)
async await(ddfA, ddfB, …) <Stmt>
•  Create a new async task to start executing Stmt after all of ddfA,

ddfB, … become available
•  Task is said to be enabled when ddfA, ddfB, … become available
ddfA.put(V)
•  Store object V in ddfA, thereby making ddfA available
•  Single-assignment rule: at most one put is permitted on a given DDF
ddfA.get()
•  Return value stored in ddfA
•  Can only be performed by async’s that contain ddfA in their await

clause (no blocking is necessary)

COMP 322, Spring 2011 (V.Sarkar)	

7

Figure 2: Example Habanero Java code
fragment with Data-Driven Futures"

DataDrivenFuture left = new DataDrivenFuture();
DataDrivenFuture right = new DataDrivenFuture();
finish {
 async left.put(leftBuilder()); // Task1
 async right.put(rightBuilder()); // Task2
 async await (left) leftReader(left); // Task3
 async await (right) rightReader(right); // Task4
 async await (left, right)

 bothReader(left, right); // Task5
}

COMP 322, Spring 2011 (V.Sarkar)	

8

Figure 3: A finish-async version of the
example in Figure 2"

// Assume that left and right are fields in this object
finish {
 async left = put(leftBuilder()); // Task1
 async right = put(rightBuilder()); // Task2
}
finish {
 async leftReader(left); // Task3
 async rightReader(right); // Task4
 async bothReader(left, right); // Task5
}

COMP 322, Spring 2011 (V.Sarkar)	

9

Two Exception cases for DDFs"
•  Case 1: If two put’s are attempted on the same

DDF, an exception is thrown because of the violation
of the single-assignment rule

•  Case 2: If a get is attempted by a task on a DDF
that was not in the task’s await list, then an
exception is thrown because DDF’s do not support
blocking gets.

COMP 322, Spring 2011 (V.Sarkar)	

10

Differences between Futures and DDFs"
•  Consumer task blocks on get() for each future that it reads,

where as async-await does not start execution till all DDFs are
available

•  Producer task can only write to a single future object, where as
a DDF task can write to multiple DDF objects

•  The choice of which future object to write to is tied to a
future task at creation time, where as the choice of output
DDF can be deferred to any point with a DDF task

•  Future tasks cannot deadlock, but it is possible for a DDF task
to never be enabled, if one of its input DDFs never becomes
available. This can be viewed as a special case of deadlock.
— This deadlock case is resolved by ensuring that each finish

construct moves past the end-finish when all enabled async tasks in
its scope have terminated, thereby ignoring any remaining non-
enabled async tasks.

COMP 322, Spring 2011 (V.Sarkar)	

11

Implementing Future Tasks using DDFs"
•  Future version

final future<int> f = async<int> { return g(); };
···
int local = f.get();

•  DDF version
DataDrivenFuture f = new DataDrivenFuture();
async { f.put(g()) };
 ···
async await (f) { int local = f.get(); };

COMP 322, Spring 2011 (V.Sarkar)	

12

Listing 1: use of DDFs with empty objects"

COMP 322, Spring 2011 (V.Sarkar)	

13

Using Future Tasks to generate  
Computation Graph CG3 from Homework 2"

// NOTE: return statement is optional
when return type is void

final future<void> A = async<void>
{ . . . ; return;}

final future<void> B = async<void>
{ A.get(); . . . ; return;}

final future<void> C = async<void>
{ A.get(); . . . ; return;}

final future<void> D = async<void>
{ B.get(); C.get(); . . . ; return;}

final future<void> E = async<void>
{ C.get(); . . . ; return;}

final future<void> F = async<void>
{ D.get(); E.get(); . . . ; return;}

A

B C

D E

F

Computation Graph CG3

