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Acknowledgments for Todayʼs Lecture"
•  Lecture 24 handout 
•  Slides from Prof. Guang Gao, U.Delaware 

— Topic-III-2-dataflow.pptx 

•  Sagnak Tasirlar.  Scheduling macro-dataflow programs on task-
parallel runtime systems.  M.S. Thesis, Department of 
Computer Science, Rice University, May 2011 (expected). 
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Announcements"
•  HW5 submission deadline is 5pm TODAY 
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Dataflow Computing"
•  Basic idea: replace machine instructions by a small set 

of dataflow operators 
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x = a + b; 
y = b * 7; 
z = (x-y) * (x+y); 

7 
a b 

x y 
1 2 

3 4 

5 An operator executes when all its 
input tokens are present; copies of 
the result token are distributed to 
the destination operators. No separate control flow 

Figure 1: Example instruction sequence 
and its dataflow graph"
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Extending Futures with Dataflow Principles: 
HJ Data-Driven Futures (DDFs)"

ddfA = new DataDrivenFuture() 
•  Allocate an instance of a DDF object (container) 
async await(ddfA, ddfB, …) <Stmt> 
•  Create a new async task to start executing Stmt after all of ddfA, 

ddfB, … become available 
•  Task is said to be enabled when ddfA, ddfB, … become available 
ddfA.put(V)  
•  Store object V in ddfA, thereby making ddfA available 
•  Single-assignment rule: at most one put is permitted on a given DDF 
ddfA.get() 
•  Return value stored in ddfA 
•  Can only be performed by async’s that contain ddfA in their await 

clause (no blocking is necessary) 



COMP 322, Spring 2011 (V.Sarkar)	

7 

Figure 2: Example Habanero Java code 
fragment with Data-Driven Futures"

DataDrivenFuture left = new DataDrivenFuture(); 
DataDrivenFuture right = new DataDrivenFuture(); 
finish { 
    async left.put(leftBuilder()); // Task1 
    async right.put(rightBuilder()); // Task2 
    async await ( left ) leftReader(left); // Task3 
    async await ( right ) rightReader(right); // Task4 
    async await ( left, right )  

   bothReader( left, right); // Task5 
} 
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Figure 3: A finish-async version of the 
example in Figure 2"

// Assume that left and right are fields in this object 
finish { 
    async left = put(leftBuilder()); // Task1 
    async right = put(rightBuilder()); // Task2 
} 
finish { 
    async leftReader(left); // Task3 
    async rightReader(right); // Task4 
    async bothReader( left, right); // Task5 
} 
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Two Exception cases for DDFs"
•  Case 1: If two put’s are attempted on the same 

DDF, an exception is thrown because of the violation 
of the single-assignment rule 

•  Case 2: If a get is attempted by a task on a DDF 
that was not in the task’s await list, then an 
exception is thrown because DDF’s do not support 
blocking gets.  
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Differences between Futures and DDFs"
•  Consumer task blocks on get() for each future that it reads, 

where as async-await does not start execution till all DDFs are 
available 

•  Producer task can only write to a single future object, where as 
a DDF task can write to multiple DDF objects 

•  The choice of which future object to write to is tied to a 
future task at creation time, where as the choice of output 
DDF can be deferred to any point with a DDF task 

•  Future tasks cannot deadlock, but it is possible for a DDF task 
to never be enabled, if one of its input DDFs never becomes 
available. This can be viewed as a special case of deadlock.  
— This deadlock case is resolved by ensuring that each finish 

construct moves past the end-finish when all enabled async tasks in 
its scope have terminated, thereby ignoring any remaining non-
enabled async tasks.   
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Implementing Future Tasks using DDFs"
•  Future version 

final future<int> f = async<int> { return g(); };  
···  
int local = f.get(); 

•  DDF version 
DataDrivenFuture f = new DataDrivenFuture();  
async { f.put(g()) }; 
 ···  
async await (f) { int local = f.get(); }; 
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Listing 1: use of DDFs with empty objects"
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Using Future Tasks to generate  
Computation Graph CG3 from Homework 2"

// NOTE: return statement is optional 
when return type is void 

final future<void> A = async<void> 
{ . . . ; return;} 

final future<void> B = async<void> 
{ A.get(); . . . ; return;} 

final future<void> C = async<void> 
{ A.get(); . . . ; return;} 

final future<void> D = async<void> 
{ B.get(); C.get(); . . . ; return;} 

final future<void> E = async<void> 
{ C.get(); . . . ; return;} 

final future<void> F = async<void> 
{ D.get(); E.get(); . . . ; return;} 

A 
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F 

Computation Graph CG3 


