COMP 322: Fundamentals of

Parallel Programming
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 25: Dataflow Programming and
Data-Driven Futures

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar®@rice.edu

COMP 322 Lecture 25 21 March 2011

Acknowledgments for Today’s Lecture

* Lecture 24 handout

* Slides from Prof. Guang Gao, U.Delaware
— Topic-III-2-dataflow.pptx

* Sagnak Tasirlar. Scheduling macro-dataflow programs on task-
parallel runtime systems. M.S. Thesis, Department of
Computer Science, Rice University, May 2011 (expected).

2 COMP 322, Spring 2011 (V.Sarkar) &

Announcements

* HWS5 submission deadline is 5pm TODAY

3 COMP 322, Spring 2011 (V.Sarkar) »@J

Dataflow Computing

* Basic idea: replace machine instructions by a small set
of dataflow operators

Fork Primitive Ops Switch Merge

* C;D T T ?
J

4 COMP 322, Spring 2011 (V.Sarkar) &

Figure 1: Example instruction sequence
and its dataflow graph

7
v
X=a+b; X
y= b*7; \{y
z = (x-y) * (x+y); n
v v
An operator executes when all its 5 X
input tokens are present; copies of \L
the result token are distributed to
the destination operators. No separate control flow

5 COMP 322, Spring 2011 (V.Sarkar) %

Extending Futures with Dataflow Principles:
HJ Data-Driven Futures (DDFs)
ddfA = new DataDrivenFuture()
* Allocate an instance of a DDF object (container)
async await(ddfA, ddfB, ..) <Stmt>

* Create a new async task to start executing Stmt after all of ddfA,
ddfB, .. become available

* Task is said to be enabled when ddfA, ddfB, ... become available
ddfA.put(V)
* Store object V in ddfA, thereby making ddfA available

* Single-assignment rule: at most one put is permitted on a given DDF
ddfA.get()

* Return value stored in ddfA

* Can only be performed by async's that contain ddfA in their await
clause Z/no blocking is necessary)

6 COMP 322, Spring 2011 (V.Sarkar) A

Figure 2: Example Habanero Java code
fragment with Data-Driven Futures

DataDrivenFuture left = new DataDrivenFuture():

DataDrivenFuture right = new DataDrivenFuture():

finish {

async left.put(leftBuilder()); // Taskl

async right.put(rightBuilder()): // Task2

async await (left) leftReader(left): // Task3

async await (right) rightReader(right); // Task4

async await (left, right) Taski Tasks
bothReader(left, right); // Task5 é §

I\ /)

Tasks Tasks Tasks

S

7 COMP 32:

Figure 3: A finish-async version of the
example in Figure 2

// Assume that left and right are fields in this object
finish {

async left = put(leftBuilder()). // Taskl

async right = put(rightBuilder()); // Task2

}
finish {

async leftReader(left); // Task3

async rightReader(right); // Task4

async bothReader(left, right); // Task5 Task Tasko
} S 3

| XK

Tasks Tasks Tasks

8 COMP 322, Spring

Two Exception cases for DDFs

* Case 1: If two put's are attempted on the same
DDF, an exception is thrown because of the violation
of the single-assignment rule

°* Case 2: If a get is attempted by a task on a DDF
that was not in the task's await list, then an
exception is thrown because DDF's do not support
blocking gets.

9 COMP 322, Spring 2011 (V.Sarkar) &),

Differences between Futures and DDFs

* Consumer task blocks on get() for each future that it reads,

where as async-await does not start execution till all DDFs are
available

* Producer task can only write to a single future object, where as
a DDF task can write to multiple DDF objects

* The choice of which future object to write to is tied to a
future task at creation time, where as the choice of output
DDF can be deferred to any point with a DDF task

* Future tasks cannot deadlock, but it is possible for a DDF task
to never be enabled, if one of its input DDFs never becomes
available. This can be viewed as a special case of deadlock.

—This deadlock case is resolved by ensuring that each finish
construct moves past the end-finish when all enabled async tasks in
its scope have terminated, thereby ignoring any remaining non-
enabled async tasks.

10 COMP 322, Spring 2011 (V.Sarkar) &

Implementing Future Tasks using DDFs

* Future version
final future<int> f = async<int> { return g(): }:

int local = f.get():

* DDF version
DataDrivenFuture f = new DataDrivenFuture();

async { f.put(g()) }:

async await (f) { int local = f.get(): }:

11 COMP 322, Spring 2011 (V.Sarkar))

Listing 1: use of DDFs with empty objects

1| finish {

2 DataDrivenFuture ddfA = new DataDrivenFuture ();

3 DataDrivenFuture ddfB = new DataDrivenFuture();

4 DataDrivenFuture ddfC = new DataDrivenFuture ();

5 DataDrivenFuture ddfD = new DataDrivenFuture ();

6 DataDrivenFuture ddfE = new DataDrivenFuture ();

7 async { . . . ; ddfA.put(””); } // Task A

8 async await(ddfA) { ; ddfB.put(””); } // Task B
9 async await(ddfA) { . . ; ddfC.put(””); } // Task C
10 async await(ddfB,ddfC) { ; ddfD.put(””); } // Task D
11 async await(ddfC) { . . ; ddfE.put(””); } // Task E
12 async await(ddfD,ddfE) { } // Task F

13| } // finish °
12 COMP 322, Spring 2011 (V.Sarkar)

Using Future Tasks to generate
Computation Graph CG3 from Homework 2

) O§G

Computation Graph €63

// NOTE: return statement is optional
when return type is void

final future<void> A = async<void>
{...:return}

final future<void> B = async<void>

{ Aget(): . . . : return;}
final future<void> C = async<void>
{ A.get(): . . . : return;}
final future<void> D = async<void>
{ B.get(); C.get(); return:}
final future<void> E = async<void>
{ C.get(): . . . : return;}
final future<void> F = async<void>
{ D.get(); E.get();: . . . : return;}

13 COMP 322, Spring 2011 (V.Sarkar) &

