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1 Introduction

The Concurrent Collections (CnC) modeﬂ was developed to address the need for making parallel program-
ming accessible to domain experts or non-professional programmers. One approach that has historically
addressed this problem is the creation of domain specific languages (DSLs), such as Matlab, R, SQL, and
Google’s MapReduce framework that hide the details of parallelism when programming for a specific appli-
cation domain. In contrast, CnC is a model for adding parallelism to a sequential language using primitives
that should be accessible to people who are not Computer Science majors.

The basic premise of CnC is that domain experts can identify the intrinsic data dependences and control
dependences in an application, without worrying about what parallel programming constructs should be used
to satisfy those dependences. The dependences are specified in a CnC graph for an application. Parallelism
is implicit in a CnC graph. A CnC graph has a deterministic semantics, in that all executions are guaranteed
to produce the same output state for the same input.

2 Description

The three main constructs in the CnC programming model are step collections, data collections, and con-
trol collections. A step collection corresponds to a computation, and its instances correspond to dynamic
invocations of that computation that consume and produce data items (analogous to instances of async
tasks). A data collection corresponds to a set of data items, indexed by item tags (analogous to keys in
key-value pairs), that can be accessed via put and get operations (analogous to data driven futures). Once
put, data items cannot be overwritten, they are required to be immutable. A control collection corresponds
to a factory [3] for step instances. A put operation on a control collection with a control tag results in the
prescription (creation) of step instances from one or more step collections with the control tag passed as an
input argument. In most CnC implementations, item tags and control tags may be of any data type that
supports an equality test.

These collections and their relationships are defined statically as a CnC graph in which a node corresponds
to a step, data or item collection, and a directed edge corresponds to a put, get, or prescribe operation.

CnC graph The three main constructs in a CnC graph are step collections, data collections, and control
collections. These collections and their relationships are defined statically. But for each static collection, a
set of dynamic instances is created as the program executes.

A step collection corresponds to a specific computation, and its instances correspond to invocations of that
computation with different input arguments. A control collection is said to control a step collection—adding
an instance to the control collection prescribes one or more step instances i.e., causes the step instances to
eventually execute when their inputs become available. The invoked step may continue execution by adding
instances to other control collections, and so on.

1CnC is a dataflow model, and is not in any way related to libraries such as Java’s Concurrent Collections.
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Steps also dynamically read (get) and write (put) data instances. The execution order of step instances
is constrained only by their producer and consumer relationships, including control relations. A complete
CnC specification is a graph where the nodes can be either step, data, or control collections, and the edges
represent producer, consumer and control relationships.

A CnC program includes the specification, the step code and the environment. Step code implements the
computations within individual graph nodes, whereas the environment is the external user code that invokes
and interacts with the CnC graph while it executes. The environment can produce data and control instances.
It can consume data instances and use control instances to prescribe conditional execution.

Typically, control tags have a specific meaning within the application. For example, they may be tuples of
integers modeling an iteration space (i.e., the iterations of a nested loop structure). Control tags can also
be points in non-grid spaces—nodes in a tree, in an irregular mesh, elements of a set, etc. Collections use
tags as follows:

e A step begins execution with one input argument—the control tag indexing that step instance. The
control tag argument contains the information necessary to compute the item tags for all the step’s
input and output data. For example, in a one-dimensional stencil computation the control tag “i”
could be used to access data with item tags, “i+1” and “i-1” . In a CnC specification, () parentheses
are used to denote a step collection e.g., (foo).

e Putting a control tag into a control collection will cause the corresponding steps (in all controlled step
collections) to eventually execute when their inputs become available. A control collection C is denoted
with <> angle brackets e.g., <C>.

e A data collection is an associative container indexed by item tags. The contents indexed by an item
tag i, once written, cannot be overwritten (dynamic single assignment). The immutability of entries
within a data collection, along with other features, provides determinism. In a specification file a data
collection is referred to with square-bracket syntax: [x:1,j].

Using the above syntax, together with :: and — for denoting prescription and production/consumption
relations, we can write CnC specifications that describe CnC graphs. For example, below is an example
snippet of a CnC specification showing all of the syntax.

// control relationship: myCtrl prescribes instances of myStep

<myCtrl> :: (myStep);

// myStep gets items from myData, and puts control tags in myCtrl and items in myData
[myDatal] — (myStep) — <myCtrl>, [myDatal;

Further, in addition to describing the graph structure, we might choose to use the CnC specification to
document relationships between control and item tags:

[myData: i] — (myStep: i) — <myCtrl: i+1>, [myData: i+1];

3 Example

The following simple example in Figure [l illustrates the task and data parallel capabilities of CnC. This
application takes a set of strings as input. Each string is split into words (separated by spaces). Each word
then passes through a second phase of processing that, in this case, puts it in uppercase form.

The only keyword in the CnC specification language is env, which refers to the environment—the world
outside CnC, for example, other threads or processes written in a serial language. The strings passed into
CnC from the environment are placed into [inputs] using any unique identifier as a tag. The elements
of [inputs] may be provided in any order or in parallel. Each string, when split, produces an arbitrary
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// program inputs and outputs

env -> [inputs];

env -> <stringTags>;

[results] -> env;

// control relations (prescriptions)

<stringTags> :: (splitString);

<wordTags> :: (uppercase);

// producer/consumer relations

[inputs] -> (splitString) -> <wordTags>, [words];
[words] -> (uppercase) -> [results];

Gy
i
/k> [inputs] —>

—»

(uppercase)

[results]

/\.

Figure 1: A CnC graph as described by a CnC specification. Dotted edges represent prescription (con-
trol/step relations), and arrows represent production and consumption of data. Squiggly edges represent
communication with the environment (the program outside of CnC)

number of words. These per-string outputs can be numbered 1 through N—a pair containing this number

and the original string ID serves as a globally unique item tag for all output words.

1| CnCReturnValue splitString (String tag, InputCollection inputs,
2 TagCollection wordTags, OutputCollection words) {

3 // Get input string

4 final String in = (String) inputs.Get(tag);

5 if (in.length() != 0) {

6 // construct words

7 char ch = in.charAt(0);

8 int len = 0; int i = 0; int j =

9 while (i < in.length()) {

10 if (in.charAt(i) = ch) {

11 i++; lent+;

12 } else {

13 words . Put(j+””, in.substring(j, j+len));
14 wordTags . Put(j + 77);

15 ch = in.charAt(i); len = 0; j = i;
16 }

17

18 // Put the last entry in words

19 words . Put(j+””, in.substring(j, j+len));
20 wordTags . Put(j + 77);
21 }
22 return CnCReturnValue. Success;
23 }
24| }

Listing 1: HJ code to generate Computation Graph G3 from Homework 2 using DDF's
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Listing [1| contains Java code to implement step splitString. (Intel’s Concurrent Collection release only
supports C++ code [4], but a variant has been developed at Rice University that supports Java code in
CnC steps [1].) The step implementations, specification file, and code for the environment together make
up a complete CnC application. Current implementations of CnC vary as to whether the specification file
is required, can be constructed graphically, or can be conveyed in the host language code itself through an
APIL

4 Mapping to Target Platforms

There is wide latitude in mapping CnC to different platforms. For each parallel computing platform, there are
several issues to be addressed: grain size, mapping data instances to memory locations, steps to processing
elements, and scheduling steps within a processing element. A number of distinct implementations are
possible for both distributed and shared memory parallel systems, including static, dynamic, or a hybrid of
static/dynamic systems with respect to the above choices.

Implementations of CnC typically provide a translator and a run-time system. The translator uses a CnC
specification to generate code for a run-time system API in the target language. As of the writing of this
article, there are known CnC implementations for C++ (based on Intel’s Threading Building Blocks), Java
(based on Java Concurrency Utilities), .NET (based on .NET Task Parallel Library), and Haskell.

Step Execution and Data Puts and Gets: There is much leeway in CnC implementation, but in all
implementations, step prescription involves creation of an internal data structure representing the step to
be executed. Since parallel steps can be spawned before their inputs are available, Data Driven Futures
(DDFs) [B] are a perfect vehicle for implementing CnC steps. All inputs of a CnC step are then enumerated
in the await clause of the DDF used to implement a CnC step.

Initialization and Shutdown: All implementations require some code for initializing the CnC graph in a
finish scope. The initialization creates the necessary runtime data structures for a CnC graph, and performs
the initial puts into the data and control collections that are to be performed by the environment.

Safety properties: In addition to the differences between step implementation languages, different CnC
implementations enforce the CnC graph properties differently. All implementations perform run-time system
checks of the single assignment rule, while the Java and .NET implementations also enforce tag immutabil-
ity. Finally, CnC guarantees determinism as long as steps are themselves deterministic—a contract strictly
enforceable only in Haskell (among the languages for which CnC implementations are available).

Memory reuse: Another aspect of CnC run-time systems is garbage collection. Unless the run-time system
at some point deletes the items that were put, the memory usage will continue to increase. This is because
individual items can be accessed by application-specific tags such as strings and integers, and, without
additional information, a garbage collector will not know for a sure that a specific item tag will never be
used in the future. (DDFs do not have this problem since they are only accessed by opaque object references,
rather than tags.)

One approach to assist with garbage collection of CnC items is use counts. In this approach, the user specifies
the number of get () operations expected on an item as part of a put () operation. This information enables
the CnC runtime system to free the item after the last get () operation is performed. However, there are
some potential hazards with this approach if the user provides an incorrect count. If the count is too large,
the item will never be freed. If it is too small, a get () operation may result in an exception if the item is
freed prematurely.
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