
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 27: Java Threads

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 27 28 March 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  Lecture 27 handout
•  OOPSLA 2007 tutorial by Joe Bowbeer and David Holmes

—  http://www.oopsla.org/oopsla2007/index.php?page=sub/&id=69

COMP 322, Spring 2011 (V.Sarkar)	

3

Homework 6 (due 5pm on Monday, April 4th)"
•  Assignment: write a parallel Habanero-Java program to compute

the diameter of an undirected graph
— The diameter is the maximum distance between any two vertices
— distance = length of a shortest path between the two vertices.
— diameter will provide the maximum degrees of separation between

any two people in a social network.

•  Given:
— a sequential HJ program to compute the diameter of an undirected

graph
–  Execute main program using “hj Diameter graph.txt” command

— three test data sets obtained from the Internet Movie DataBase
–  tiny.txt (seq version runs in < 1 second)
–  moviesGPart1.txt (seq version runs in ~ 10 seconds)
–  moviesG.txt (seq version runs in ~ 20 minutes)

— you can generate additional data sets by using search interfaces
from software available at http://www.imdb.com/interfaces

COMP 322, Spring 2011 (V.Sarkar)	

4

Kernel of Diameter.main()"
 // run breadth first search from each vertex
 int best = -1;

 ST verts = (ST)G.vertices();
 for(java.util.Iterator iter = verts.iterator(); iter.hasNext();) {
 Object s = iter.next();

 PathFinder finder = new PathFinder(G, s.toString());
 ST secondary_verts = (ST)G.vertices();
 for(java.util.Iterator iter2 = secondary_verts.iterator(); iter2.hasNext();) {
 Object v = iter2.next();

 if (finder.isReachable(v.toString()) && finder.distanceTo(v.toString()) > best) {
 best = finder.distanceTo(v.toString());
 } // if
 } // for iter2
 } // for iter

COMP 322, Spring 2011 (V.Sarkar)	

5

Real-World Parallel Programming
Models"

•  Library approaches
— POSIX threads
— Message-Passing Interface (MPI)
— MapReduce frameworks

•  Pseudocomment “pragma” approaches
— OpenMP

•  Language approaches
— Unified Parallel C
— Co-Array Fortran
— Habanero-Java
— X10
— . . .

•  Java takes a library approach with a little bit of language
support (synchronized keyword)

COMP 322, Spring 2011 (V.Sarkar)	

6

Closures"
•  Library-based approaches to parallel programming require

interfaces in which computations can be passed as data
•  Recall that a closure is a first-class function with free

variables that are bound in function’s lexical environment e.g.,
the anonymous lambda expression in the following Scheme
program is a closure
; Return a list of all books with at least THRESHOLD copies sold.
(define (best-selling-books threshold)
 (filter
 (lambda (book)
 (>= (book-sales book) threshold))
 book-list))

•  Note that the value of free variable threshold is captured when
the lambda expression is defined

COMP 322, Spring 2011 (V.Sarkar)	

7

HJ Asyncs and Closures"
•  The body of an HJ async task is a parameter-less closure that

is both created and enabled for execution at the point when the
async statement is executed

•  An async captures the values of free variables (local variables
in outer scopes) when it is created
— e.g., variable len in Listing 1 below

COMP 322, Spring 2011 (V.Sarkar)	

8

java.lang.Runnable interface"
•  Any class that implements java.lang.Runnable must provide a

parameter-less run() method with void return type
•  Lines 3-7 in Listing 2 show the creation of an instance of an

anonymous inner class that implements the Runnable interface
•  The computation in the run() method can be invoked by calling

r.run()

COMP 322, Spring 2011 (V.Sarkar)	

9

java.lang.Thread class"
•  Execution of a Java program begins with an instance of Thread

created by the Java Virtual Machine (JVM) that executes the
program’s main() method.

•  Parallelism can be introduced by creating additional instances of
class Thread that execute as parallel threads.

COMP 322, Spring 2011 (V.Sarkar)	

10

HJ runtime uses Java threads as workers …"

•  HJ runtime creates a small number of worker threads, typically
one per core

•  Workers push async’s/continuations into a logical work queue
•  when an async operation is performed
•  when an end-finish operation is reached

•  Workers pull task/continuation work item when they are idle

COMP 322, Spring 2011 (V.Sarkar)	

11

… because programming directly with Java threads
can be expensive"

Lecture 11, Table 1: Fork-Join Microbenchmark
Measurements (execution time in micro-seconds)"

COMP 322, Spring 2011 (V.Sarkar)	

12

Two ways to specify computation for a
Java thread"

1. Define a class that implements the Runnable
interface and pass an instance of that class to the
Thread constructor in line 3 of Listing 3.
—  It is common to create an instance of an

anonymous inner class that implements Runnable
for this purpose, as discussed in Section 2. In
this case, the Runnable instance defines the work
to be performed, and the Thread instance
identifies the worker that will perform the work.

2. Subclass Thread and override the run() method. This
is usually inconvenient in practice because of Java’s
single-inheritance constraint.

COMP 322, Spring 2011 (V.Sarkar)	

13

start() and join() methods"
•  A Thread instance starts executing when its start()

method is invoked
— start() can be invoked at most once per Thread instance
— As with async, the parent thread can immediately move to

the next statement after invoking t.start()

•  A t.join() call forces the invoking thread to wait till
thread t completes.
— Lower-level primitive than finish since it only waits for a

single thread rather than a collection of threads
— No restriction on which thread performs a join on which

thread, so it is easy for a programmer to erroneously create
a deadlock cycle with join operations

— No notion of an Immediately Enclosing Finish in Java threads

COMP 322, Spring 2011 (V.Sarkar)	

14

Listing 4: Two-way Parallel ArraySum
using Java threads"

COMP 322, Spring 2011 (V.Sarkar)	

15

Callable Objects can be used to create
Future Tasks in Java"

•  Any class that implements java.lang.Callable<V> must provide a
call() method with return type V

•  Sequential example with Callable interface

COMP 322, Spring 2011 (V.Sarkar)	

16

4 steps to create future tasks using
Callable objects"

1. Create a parameter-less callable closure using a
statement like “Callable<Object> c = new
Callable<Object>() {public Object call()
{ return ...; }}; ”

2. Encapsulate the closure as a task using a statement
like “FutureTask<Object> ft = new
FutureTask<Object>(c);”

3. Start executing the task in a new thread by issuing
the statement, “new Thread(ft).start();”

4. Wait for the task to complete, and get its result by
issuing the statement, “Object o = ft.get();”.

COMP 322, Spring 2011 (V.Sarkar)	

17

Listing 7: HTML renderer in Java after
parallelization of Callable tasks"

