
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 28: Java Threads (contd),
synchronized statement

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 28 30 March 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  Handout for Lectures 27 and 28
•  “Introduction to Concurrent Programming in Java”, Joe Bowbeer, David

Holmes, OOPSLA 2007 tutorial slides
— Contributing authors: Doug Lea, Brian Goetz

COMP 322, Spring 2011 (V.Sarkar)	

3

Example of creating Java threads by subclassing Thread
(not recommended for wide use)"

•  This program uses two threads: the main thread and a HelloThread
— Each prints a greeting – the order of which is nondeterministic

public static void main(String[] args) {

 class HelloThread extends Thread {

 public void run() {

 System.out.println(“Hello from thread ”

 + Thread.currentThread().getName());}

 }

 Thread t = new HelloThread(); // create HelloThread

 t.start(); // start HelloThread

 System.out.println(“Hello from main thread”);

 }

•  Program execution ends when both user threads have completed

COMP 322, Spring 2011 (V.Sarkar)	

4

Example of creating Java threads with
Runnable objects (recap)"

COMP 322, Spring 2011 (V.Sarkar)	

5

Another Example: Sequential Web Server"

 public class SequentialWebServer {

 public static final int PORT = 8080;

 public static void main(String[] args) throws IOException {

 ServerSocket server = new ServerSocket(PORT);

 while (true) {

 Socket sock = server.accept(); // get next connection

 try {

 processRequest(sock); // do the real work

 } catch (IOException ex) {

 System.err.println("An error occurred ...");
 ex.printStackTrace();

 }

 }

 }

 // ... rest of class definition

COMP 322, Spring 2011 (V.Sarkar)	

6

Parallelization of Web Server Example
using Runnable Tasks"

public class ThreadPerTaskWebServer { . . .

 public static void main(String[] args) throws IOException {

 ServerSocket server = new ServerSocket(PORT);

 while (true) {

 final Socket sock = server.accept();

 Runnable r = new Runnable() { // anonymous implementation

 public void run() {

 try {

 processRequest(sock);

 } catch (IOException ex) {

 System.err.println("An error occurred ...");

 }

 }

 };

 new Thread(r).start();

 } . . .

COMP 322, Spring 2011 (V.Sarkar)	

7

Callable Objects can be used to create
Future Tasks in Java"

•  Any class that implements java.lang.Callable<V> must provide a
call() method with return type V

•  Sequential example with Callable interface

COMP 322, Spring 2011 (V.Sarkar)	

8

4 steps to create future tasks using
Callable objects"

1. Create a parameter-less callable closure using a
statement like “Callable<Object> c = new
Callable<Object>() {public Object call()
{ return ...; }}; ”

2. Encapsulate the closure as a task using a statement
like “FutureTask<Object> ft = new
FutureTask<Object>(c);”

3. Start executing the task in a new thread by issuing
the statement, “new Thread(ft).start();”

4. Wait for the task to complete, and get its result by
issuing the statement, “Object o = ft.get();”.

COMP 322, Spring 2011 (V.Sarkar)	

9

Listings 7 and 8: parallelization of HTML
renderer example"

COMP 322, Spring 2011 (V.Sarkar)	

10

Possible states for a Java thread 
(java.lang.Thread.State)"

•  NEW
— A thread that has not yet started is in this state.

•  RUNNABLE
— A thread executing in the Java virtual machine is in this state.

•  BLOCKED
— A thread that is blocked waiting for a monitor lock is in this state.

•  WAITING
— A thread that is waiting indefinitely for another thread to perform

a particular action is in this state e.g., join()

•  TIMED_WAITING
— A thread that is waiting for another thread to perform an action

for up to a specified waiting time is in this state e.g., join() with
timeout

•  TERMINATED
— A thread that has exited is in this state.

COMP 322, Spring 2011 (V.Sarkar)	

11

Thread Lifecycle"
•  A thread is created by instantiating a Thread object
•  A thread is started by calling Thread.start() on that object

— Causes execution of its run() method in a new thread of execution

•  A thread’s state can be inspected by calling Thread.getState()
•  A thread terminates by:

— Returning normally from its run() method
— Throwing an exception that isn't caught by any catch block
— The VM being shut down

•  The JVM shuts down when all user (non-daemon) threads terminate
— Or when shutdown is requested by System.exit, CTRL/C, signal, or

other process termination triggers

•  Daemon threads are terminated when JVM shuts down
— Child thread inherits daemon status from parent thread
— Override by calling Thread.setDaemon(boolean) before starting thread
— Main thread is started as user thread

COMP 322, Spring 2011 (V.Sarkar)	

12

HJ isolated statement 
(recap from Lecture 10) "

isolated <body>
•  Two tasks executing isolated statements with interfering accesses

must perform the isolated statement in mutual exclusion
— Two instances of isolated statements, ⟨stmt1⟩ and ⟨stmt2⟩, are said to

interfere with each other if both access a shared location, such that
at least one of the accesses is a write.

 Weak isolation guarantee: no mutual exclusion applies to non-isolated
statements i.e., to (isolated, non-isolated) and (non-isolated, non-
isolated) pairs of statement instances

•  Isolated statements may be nested (redundant)
•  Isolated statements must not contain any other parallel

statement: async, finish, get, forall
•  In case of exception, all updates performed by <body> before

throwing the exception will be observable after exiting <body>

COMP 322, Spring 2011 (V.Sarkar)	

13

How to implement critical sections and
isolated statements in Java?"

•  Atomic variables can be used to handle special cases of isolated
operations on single variable of primitive or reference type
— Highly recommended that you use java.util.concurrent.atomic

whenever it fits your needs

•  Need locks for more general cases. Basic idea is to implement
isolated <stmt>as follows:
1.  Acquire lock Li

2.  Execute <stmt>
3.  Release lock Li

•  The responsibility for ensuring that the choice of locks
correctly implements the semantics of isolated lies with the
programmer.

•  The main guarantee provided by locks is that only one thread
can hold a lock at a time, and the thread is blocked when
acquiring the lock if the lock is unavailable.

COMP 322, Spring 2011 (V.Sarkar)	

14

Objects and Locks in Java --- 
synchronized statements and methods"

•  Every Java object has an associated lock acquired via:
—  synchronized statements

–  synchronized(foo){
 // execute code while holding foo’s lock
}

—  synchronized methods
–  public synchronized void op1(){

 // execute op1 while holding ‘this’ lock
}

•  Language does not enforce any relationship between object used for
locking and objects accessed in isolated code
— If same object is used for locking and data access, then the object

behaves like monitors
•  Locking and unlocking are automatic

— Locks are released when a synchronized block exits
By normal means: end of block reached, return, break
When an exception is thrown and not caught

COMP 322, Spring 2011 (V.Sarkar)	

15

Example: Obvious Deadlock"
•  This code can deadlock if leftHand() and rightHand() are called

concurrently from different threads
—  Because the locks are not acquired in the same order

 public class ObviousDeadlock {
 . . .

 public void leftHand() {

 synchronized(lock1) {

 synchronized(lock2) {

 for (int i=0; i<10000; i++)

 sum += random.nextInt(100);

 }

 }

 }

 public void rightHand() {

 synchronized(lock2) {

 synchronized(lock1) {

 for (int i=0; i<10000; i++)

 sum += random.nextInt(100);

 }

 }

 }

 }

COMP 322, Spring 2011 (V.Sarkar)	

16

Dynamic Order Deadlocks"
•  There are even more subtle ways for threads to deadlock due to inconsistent

lock ordering
— Consider a method to transfer a balance from one account to another:
public class SubtleDeadlock {
 public void transferFunds(Account from,
 Account to,
 int amount) {
 synchronized (from) {
 synchronized (to) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }
 }

— What if one thread tries to transfer from A to B while another tries to
transfer from B to A ?

Inconsistent lock order again – Deadlock!

COMP 322, Spring 2011 (V.Sarkar)	

17

Avoiding Dynamic Order Deadlocks"
•  The solution is to induce a lock ordering

—  Here, uses an existing unique numeric key
—  public class SafeTransfer {

 public void transferFunds(Account from, Account to, int amount) {

 Account firstLock, secondLock;
 if (fromAccount.acctId == toAccount.acctId)
 throw new Exception(“Cannot self-transfer”);
 else if (fromAccount.acctId < toAccount.acctId) {
 firstLock = fromAccount;
 secondLock = toAccount;
 }
 else {
 firstLock = toAccount;
 secondLock = fromAccount;
 }
 synchronized (firstLock) {

 synchronized (secondLock) {

 from.subtractFromBalance(amount);

 to.addToBalance(amount);

 }

 }

 }
 }

COMP 322, Spring 2011 (V.Sarkar)	

18

Java Locks are Reentrant"
•  Locks are granted on a per-thread basis

— Called reentrant or recursive locks
— Promotes object-oriented concurrent code

•  A synchronized block means execution of this code requires the current thread
to hold this lock
— If it does — fine
— If it doesn’t — then acquire the lock

•  Reentrancy means that recursive methods, invocation of super methods, or local
callbacks, don’t deadlock

 public class Widget {

 public synchronized void doSomething() { ... }

 }

 public class LoggingWidget extends Widget {

 public synchronized void doSomething() {

 Logger.log(this + ": calling doSomething()");

 super.doSomething(); // Doesn't deadlock!
 }
 }

