
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 29: Java synchronized
statement with wait/notify

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 29 1 April 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  Combined handout for Lectures 27-29 (to be updated)
•  “Introduction to Concurrent Programming in Java”, Joe Bowbeer, David

Holmes, OOPSLA 2007 tutorial slides
— Contributing authors: Doug Lea, Brian Goetz

•  ECE 3005 course slides from Georgia Tech
— http://users.ece.gatech.edu/~copeland/jac/3055-05/ppt/ch07-

sync-b.ppt

COMP 322, Spring 2011 (V.Sarkar)	

3

Announcements""
•  Homework 6 due by 5pm on Monday, April 4th
•  Homework 7 will be assigned on April 4th

— Programming assignment using pure Java (no HJ)
— Choice of projects (per survey feedback)

COMP 322, Spring 2011 (V.Sarkar)	

4

Recap of Java synchronized statement/method"
•  Every Java object has an associated lock acquired via:

—  synchronized statements
–  synchronized(foo){

 // execute code while holding foo’s lock
}

—  synchronized methods
–  public synchronized void op1(){

 // execute op1 while holding ‘this’ lock
}

•  Language does not enforce any relationship between object used for
locking and objects accessed in isolated code
— If same object is used for locking and data access, then the object

behaves like monitors
•  Locking and unlocking are automatic

— Locks are released when a synchronized block exits
By normal means: end of block reached, return, break
When an exception is thrown and not caught

COMP 322, Spring 2011 (V.Sarkar)	

5

Use of class objects in synchronized
statements/methods"

•  A class object exists for every class
•  static synchronized methods lock the class object
•  class object can be locked explicitly:

–  synchronized(Foo.class){ /* ... */ }

•  No connection between locking the Class object and locking an
instance of the class
— Locking the Class object does not lock any instance
— Instance methods that use static variables must synchronize access

to them explicitly by locking the Class object
Always use the class literal to get reference to Class object—

not this.getClass() as you may access a subclass object

COMP 322, Spring 2011 (V.Sarkar)	

6

Implementation of Java synchronized
statements/methods"

•  Every object has an associated lock
•  “synchronized” is translated to matching monitorenter and

monitorexit bytecode instructions for the Java virtual machine
— monitorenter requests “ownership” of the object’s lock
— monitorexit releases “ownership” of the object’s lock

•  If a thread performing monitorenter does not own the lock
(because another thread already owns it), it is placed in an
unordered “entry set” for the object’s lock

COMP 322, Spring 2011 (V.Sarkar)	

7

What if you want to wait for shared state
to satisfy a desired property?"

public synchronized void insert(Object item) { // producer
 // TODO: wait till count < BUFFER SIZE
 ++count;
 buffer[in] = item;
 in = (in + 1) % BUFFER SIZE;
 // TODO: notify consumers that an insert has been performed

}

public synchronized Object remove() { // consumer
 Object item;

 // TODO: wait till count > 0
 --count;
 item = buffer[out];
 out = (out + 1) % BUFFER SIZE;
 // TODO: notify producers that a remove() has been performed
 return item;

}

COMP 322, Spring 2011 (V.Sarkar)	

8

The Java wait() Method"
•  A thread can perform a wait() method on an object that it

owns:
1.  the thread releases the object lock
2.  thread state is set to blocked
3.  thread is placed in the wait set

•  Causes thread to wait until another thread invokes the notify()
method or the notifyAll() method for this object.

•  Since interrupts and spurious wakeups are possible, this
method should always be used in a loop e.g.,

 synchronized (obj) {
 while (<condition does not hold>)
 obj.wait();
 ... // Perform action appropriate to condition
 }

COMP 322, Spring 2011 (V.Sarkar)	

9

Entry and Wait Sets"

COMP 322, Spring 2011 (V.Sarkar)	

10

The notify() Method"
When a thread calls notify(), the following occurs:

1.  selects an arbitrary thread T from the wait set
2.  moves T to the entry set
3.  sets T to Runnable

T can now compete for the object’s lock again

COMP 322, Spring 2011 (V.Sarkar)	

11

Multiple Notifications"
•  notify() selects an arbitrary thread from the wait set.

*This may not be the thread that you want to be selected.
•  Java does not allow you to specify the thread to be selected
•  notifyAll() removes ALL threads from the wait set and places

them in the entry set. This allows the threads to decide among
themselves who should proceed next.

•  notifyAll() is a conservative strategy that works best when
multiple threads may be in the wait set

COMP 322, Spring 2011 (V.Sarkar)	

12

insert() with wait/notify Methods"
public synchronized void insert(Object item) {

 while (count == BUFFER SIZE) {
 try {
 wait();
 }
 catch (InterruptedException e) { }
 }
 ++count;
 buffer[in] = item;
 in = (in + 1) % BUFFER SIZE;
 notify();

}

COMP 322, Spring 2011 (V.Sarkar)	

13

remove() with wait/notify Methods"
public synchronized Object remove() {

 Object item;
 while (count == 0) {
 try {
 wait();
 }
 catch (InterruptedException e) { }
 }
 --count;
 item = buffer[out];
 out = (out + 1) % BUFFER SIZE;
 notify();
 return item;

}

COMP 322, Spring 2011 (V.Sarkar)	

14

Complete Bounded Buffer using Java
Synchronization"

public class BoundedBuffer implements Buffer
{

 private static final int BUFFER SIZE = 5;
 private int count, in, out;
 private Object[] buffer;
 public BoundedBuffer() { // buffer is initially empty
 count = 0;
 in = 0;
 out = 0;
 buffer = new Object[BUFFER SIZE];
 }
 public synchronized void insert(Object item) { // See previous slides
 }
 public synchronized Object remove() { // See previous slides
 }

}

COMP 322, Spring 2011 (V.Sarkar)	

15

TrafficSignal example"
•  The wait methods will

— Atomically release the lock and block the current thread
— Reacquire lock before returning

•  notify() means wake up one waiting thread
•  notifyAll() means wake up all waiting threads

 public class TrafficSignal {
 public enum Color { GREEN, YELLOW, RED };
 private Color color;

 public synchronized void setColor(Color color) {
 this.color = color;
 notifyAll();
 }
 public synchronized void awaitGreen() throws InterruptedException

{
 while (color != Color.GREEN) wait();
 }
 }

COMP 322, Spring 2011 (V.Sarkar)	

16

Cancelling Threads: Interruption"

•  Problem: how do we shut down a thread like a web server?
•  Need to communicate that shutdown has been requested

— Could set a flag that is polled in the main loop
But main loop could be blocked in accept()

•  Interruption provides a means of signalling a request to another
thread

•  Each Thread has an “interrupted status” which is
— Set when interrupt() method is invoked on it
— Queried by isInterrupted() method

•  Many blocking methods respect interruption requests and return
early by throwing checked InterruptedException
—  Object.wait()
— Throwing IE usually clears interrupted status

COMP 322, Spring 2011 (V.Sarkar)	

17

Dealing with Interruption"
•  Golden rule for library and general-purpose task code:

— Never hide the fact that a thread was interrupted!
— Either deal with the exception, or leave evidence of the interruption

for your caller
Throw InterruptedException yourself
Re-assert interrupted status with interrupt()

public class Foo implements Runnable {
 public void run() {
 try {
 blockingMethod();
 }
 catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 } } }

COMP 322, Spring 2011 (V.Sarkar)	

18

Responses to Interruption"

•  Re-throw IE
— So caller can handle interruption request

•  Cancel and return early
— Clean up and exit without signalling an error
— May require rollback or recovery

•  Ignore interruption
— When it is too dangerous to stop
— Should re-assert interrupted status before returning

•  Postpone interruption
— Remember that interrupt occurred
— Finish what you are doing and then throw IE

•  Throw a general failure exception
— When interruption is one of many reasons method can fail

COMP 322, Spring 2011 (V.Sarkar)	

19

Example: Shutting Down the Web Server"
public class WebServerWithShutdown {
 private final ServerSocket server;
 private Thread serverThread;
 public WebServerWithShutdown(int port) throws IOException {
 server = new ServerSocket(port);
 server.setSoTimeout(5000); // so we can check for interruption
 }
 public synchronized void shutdownServer() throws IE..,IOException {
 if (serverThread == null) throw new IllegalStateException();
 serverThread.interrupt();
 serverThread.join(5000); // wait 5s before closing socket
 server.close(); // to give thread a chance to cleanup
 }
 public synchronized void startServer() {
 if (serverThread == null) {
 (serverThread = new Thread() {
 public void run() {
 while (!Thread.interrupted()) {
 try { processRequest(server.accept()); }
 catch (SocketTimeoutException e) { continue; }
 catch (IOException ex) { /* log it */ }
 }
 }
 }).start();
 }
 }
}

Note: shutdownServer can be
harmlessly called more than once

