
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 30: Advanced locking in Java

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 30 4 April 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  Combined handout for Lectures 27-30 (to be updated)
•  “Introduction to Concurrent Programming in Java”, Joe Bowbeer, David

Holmes, OOPSLA 2007 tutorial slides
— Contributing authors: Doug Lea, Brian Goetz

•  “Java Concurrency Utilities in Practice”, Joe Bowbeer, David Holmes,
OOPSLA 2007 tutorial slides

— Contributing authors: Doug Lea, Tim Peierls, Brian Goetz

•  ECE 3005 course slides from Georgia Tech
— http://users.ece.gatech.edu/~copeland/jac/3055-05/ppt/ch07-

sync-b.ppt

•  A Sophomoric Introduction to Shared-Memory Parallelism and
Concurrency, Lecture 6, Dan Grossman, U. Washington
— http://www.cs.washington.edu/homes/djg/teachingMaterials/

grossmanSPAC_lec6.pptx

COMP 322, Spring 2011 (V.Sarkar)	

3

Announcements""
•  Homework 6 deadline extended to 5pm on Wednesday, April 6th

due to difficulties in accessing SUG@R nodes
— Please use special COMP322 queue for SUG@R during lab hours

COMP 322, Spring 2011 (V.Sarkar)	

4

Complete Bounded Buffer using Java
Synchronization (Recap)"

public class BoundedBuffer implements Buffer
{

 private static final int BUFFER SIZE = 5;
 private int count, in, out;
 private Object[] buffer;
 public BoundedBuffer() { // buffer is initially empty
 count = 0;
 in = 0;
 out = 0;
 buffer = new Object[BUFFER SIZE];
 }
 public synchronized void insert(Object item) { // See previous slides
 }
 public synchronized Object remove() { // See previous slides
 }

}

COMP 322, Spring 2011 (V.Sarkar)	

5

insert() with wait/notify Methods"
public synchronized void insert(Object item) {

 while (count == BUFFER SIZE) {
 try {
 wait();
 }
 catch (InterruptedException e) { }
 }
 ++count;
 buffer[in] = item;
 in = (in + 1) % BUFFER SIZE;
 notify();

}

COMP 322, Spring 2011 (V.Sarkar)	

6

remove() with wait/notify Methods"
public synchronized Object remove() {

 Object item;
 while (count == 0) {
 try {
 wait();
 }
 catch (InterruptedException e) { }
 }
 --count;
 item = buffer[out];
 out = (out + 1) % BUFFER SIZE;
 notify();
 return item;

}

COMP 322, Spring 2011 (V.Sarkar)	

7

Entry and Wait Sets"
Scenario in which multiple producers and consumers can be in wait set
for BUFFER_SIZE = 1

Time-step Entry set Buffer state Wait set
t P0 EMPTY C0, C1
t+1 C0, P1 FULL C1
t+2 C0 FULL P1, C1

COMP 322, Spring 2011 (V.Sarkar)	

8

java.util.concurrent

•  General purpose toolkit for developing concurrent applications
— import java.util.concurrent.*

•  Goals: “Something for Everyone!”
— Make some problems trivial to solve by everyone

Develop thread-safe classes, such as servlets, built on
concurrent building blocks like ConcurrentHashMap

— Make some problems easier to solve by concurrent programmers
Develop concurrent applications using thread pools, barriers,

latches, and blocking queues
— Make some problems possible to solve by concurrency experts

Develop custom locking classes, lock-free algorithms

•  HJ approach
— Build HJ runtime on top of java.util.concurrent library

COMP 322, Spring 2011 (V.Sarkar)	

9

List of j.u.c. libraries"
•  Executors

—  Executor

—  ExecutorService

—  ScheduledExecutorService

—  Callable

—  Future

—  ScheduledFuture

—  Delayed

—  CompletionService

—  ThreadPoolExecutor

—  ScheduledThreadPoolExecutor
—  AbstractExecutorService

—  Executors

—  FutureTask

—  ExecutorCompletionService

•  Queues
—  BlockingQueue

—  ConcurrentLinkedQueue

—  LinkedBlockingQueue

—  ArrayBlockingQueue

—  SynchronousQueue

—  PriorityBlockingQueue

—  DelayQueue

•  Atomics: java.util.concurrent.atomic
—  Atomic[Type]

—  Atomic[Type]Array

—  Atomic[Type]FieldUpdater

—  Atomic{Markable,Stampable}Reference

•  Concurrent Collections

—  ConcurrentMap

—  ConcurrentHashMap

—  CopyOnWriteArray{List,Set}

•  Locks: java.util.concurrent.locks
—  Lock

—  Condition

—  ReadWriteLock

—  AbstractQueuedSynchronizer

—  LockSupport

—  ReentrantLock

—  ReentrantReadWriteLock

•  Synchronizers
—  CountDownLatch

—  Semaphore

—  Exchanger

—  CyclicBarrier

COMP 322, Spring 2011 (V.Sarkar)	

10

Key Functional Groups in j.u.c."
•  Atomic variables

— The key to writing lock-free algorithms

•  Concurrent Collections:
— Queues, blocking queues, concurrent hash map, …
— Data structures designed for concurrent environments

•  Locks and Conditions
— More flexible synchronization control
— Read/write locks

•  Executors, Thread pools and Futures
— Execution frameworks for asynchronous tasking

•  Synchronizers: Semaphore, Latch, Barrier, Exchanger
— Ready made tools for thread coordination

COMP 322, Spring 2011 (V.Sarkar)	

11

Locks"

Example of hand-over-hand locking:
•  L1.lock() … L2.lock() … L1.unlock() … L3.lock() … L2.unlock() ….

COMP 322, Spring 2011 (V.Sarkar)	

12

java.util.concurrent.locks.Lock interface"
 interface Lock {

 void lock();

 void lockInterruptibly() throws InterruptedException;

 boolean tryLock();

 boolean tryLock(long timeout, TimeUnit unit)

 throws InterruptedException;

 void unlock();

 Condition newCondition();

 // can associate multiple condition vars with lock

}

•  java.util.concurrent.locks.Lock interface is implemented by
java.util.concurrent.locks.ReentrantLock class

COMP 322, Spring 2011 (V.Sarkar)	

13

Simple ReentrantLock() example"

COMP 322, Spring 2011 (V.Sarkar)	

14

java.util.concurrent.locks.condition interface"
•  Can be allocated by calling ReentrantLock.newCondition()
•  Supports multiple condition variables per lock
•  Methods supported by an instance of condition

— void await() // NOTE: not wait
–  Causes current thread to wait until it is signaled or

interrupted
–  Variants available with support for interruption and timeout

— void signal() // NOTE: not notify
–  Wakes up one thread waiting on this condition

— void signalAll() // NOTE: not notifyAll()
–  Wakes up all threads waiting on this condition

•  For additional details see
— http://download.oracle.com/javase/1.5.0/docs/api/java/util/

concurrent/locks/Condition.html
14

COMP 322, Spring 2011 (V.Sarkar)	

15

BoundedBuffer implementation using
two conditions, notFull and notEmpty"

class BoundedBuffer {
 final Lock lock = new ReentrantLock();
 final Condition notFull = lock.newCondition();
 final Condition notEmpty = lock.newCondition();

 final Object[] items = new Object[100];
 int putptr, takeptr, count;

 . . .

COMP 322, Spring 2011 (V.Sarkar)	

16

BoundedBuffer implementation using two
conditions, notFull and notEmpty (contd)"

 public void put(Object x) throws InterruptedException {
 lock.lock();
 try {
 while (count == items.length) notFull.await();
 items[putptr] = x;
 if (++putptr == items.length) putptr = 0;
 ++count;
 notEmpty.signal();
 } finally {
 lock.unlock();
 }
 }

COMP 322, Spring 2011 (V.Sarkar)	

17

BoundedBuffer implementation using two
conditions, notFull and notEmpty (contd)"
 public Object take() throws InterruptedException {
 lock.lock();
 try {
 while (count == 0) notEmpty.await();
 Object x = items[takeptr];
 if (++takeptr == items.length) takeptr = 0;
 --count;
 notFull.signal();
 return x;
 } finally {
 lock.unlock();
 }
 }

COMP 322, Spring 2011 (V.Sarkar)	

18

Reading vs. writing"
•  Recall that the use of synchronization is to protect interfering

accesses
— Multiple concurrent reads of same memory: Not a problem
— Multiple concurrent writes of same memory: Problem
— Multiple concurrent read & write of same memory: Problem

So far:
— If concurrent write/write or read/write might occur, use

synchronization to ensure one-thread-at-a-time

But:
— This is unnecessarily conservative: we could still allow multiple

simultaneous readers

Consider a hashtable with one coarse-grained lock
— So only one thread can perform operations at a time

But suppose:
— There are many simultaneous lookup operations
—  insert operations are very rare

COMP 322, Spring 2011 (V.Sarkar)	

19

java.util.concurrent.locks.ReadWriteLock
interface"

 interface ReadWriteLock {

 Lock readLock();

 Lock writeLock();

 }
•  Even though the interface appears to just define a pair of locks,

the semantics of the pair of locks is coupled as follows
— Case 1: a thread has successfully acquired writeLock().lock()

–  No other thread can acquire readLock() or writeLock()
— Case 2: no thread has acquired writeLock().lock()

–  Multiple threads can acquire readLock()
–  No other thread can acquire writeLock()

•  java.util.concurrent.locks.ReadWriteLock interface is implemented
by java.util.concurrent.locks.ReadWriteReentrantLock class

COMP 322, Spring 2011 (V.Sarkar)	

20

Example code"
class Hashtable<K,V> {
 …
 // coarse-grained, one lock for table
 ReadWriteLock lk = new new ReentrantReadWriteLock();
 V lookup(K key) {
 int bucket = hasher(key);
 lk.readLock().lock(); // only blocks writers
 … read array[bucket] …
 lk.readLock().unlock();
 }
 void insert(K key, V val) {
 int bucket = hasher(key);
 lk.writeLock().lock(); // blocks readers and writers
 … write array[bucket] …

 lk.writeLock().unlock();
 }
}

