
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 31: Java executors and
synchronizers

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 31 6 April 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  Combined handout for Lectures 27-31 (to be updated)
•  “Introduction to Concurrent Programming in Java”, Joe Bowbeer, David

Holmes, OOPSLA 2007 tutorial slides
— Contributing authors: Doug Lea, Brian Goetz

•  “Java Concurrency Utilities in Practice”, Joe Bowbeer, David Holmes,
OOPSLA 2007 tutorial slides

— Contributing authors: Doug Lea, Tim Peierls, Brian Goetz

•  “Java Concurrency in Practice”, Brian Goetz with Tim Peierls, Joshua
Bloch, Joseph Bowbeer, David Holmes and Doug Lea. Addison-Wesley,
2006.

•  “Engineering Fine-Grained Parallelism Support for Java 7”, Doug Lea,
July 2010.

COMP 322, Spring 2011 (V.Sarkar)	

3

Announcements""
•  Homework 6 deadline extended to 5pm today
•  comp322 queue for SUG@R is now available every day till end

of semester
— qsub -I -N JOBNAME -q interactive -V -l nodes=1:ppn=8 -W

group_list=comp322

COMP 322, Spring 2011 (V.Sarkar)	

4

Key Functional Groups in j.u.c."
•  Atomic variables

— The key to writing lock-free algorithms

•  Concurrent Collections:
— Queues, blocking queues, concurrent hash map, …
— Data structures designed for concurrent environments

•  Locks and Conditions
— More flexible synchronization control
— Read/write locks

•  Executors, Thread pools and Futures
— Execution frameworks for asynchronous tasking

•  Synchronizers: Semaphore, Latch, Barrier, Exchanger
— Ready made tools for thread coordination

COMP 322, Spring 2011 (V.Sarkar)	

5

Summary: Relating j.u.c. libraries to HJ
constructs"

•  Executors
—  Executor

—  ExecutorService

—  ScheduledExecutorService

—  Callable

—  Future

—  ScheduledFuture

—  Delayed

—  CompletionService

—  ThreadPoolExecutor

—  ScheduledThreadPoolExecutor
—  AbstractExecutorService

—  Executors

—  FutureTask

—  ExecutorCompletionService

•  Queues
—  BlockingQueue

—  ConcurrentLinkedQueue

—  LinkedBlockingQueue

—  ArrayBlockingQueue

—  SynchronousQueue

—  PriorityBlockingQueue

—  DelayQueue

•  Atomics: java.util.concurrent.atomic
—  Atomic[Type]

—  Atomic[Type]Array

—  Atomic[Type]FieldUpdater

—  Atomic{Markable,Stampable}Reference

•  Concurrent Collections

—  ConcurrentMap

—  ConcurrentHashMap

—  CopyOnWriteArray{List,Set}

•  Locks: java.util.concurrent.locks
—  Lock

—  Condition

—  ReadWriteLock

—  AbstractQueuedSynchronizer

—  LockSupport

—  ReentrantLock

—  ReentrantReadWriteLock

•  Synchronizers
—  CountDownLatch

—  Semaphore

—  Exchanger

—  CyclicBarrier

COMP 322, Spring 2011 (V.Sarkar)	

6

Thread Creation Patterns"
•  Earlier, we saw two thread creation patterns for the web server

— Single-threaded
— Thread-per-task
— Both have problems

•  Single-threaded: doesn't scale, poor throughput and response
time

•  Thread-per-task: problems with unbounded thread creation
— Overhead of thread startup/teardown incurred per request
— Creating too many threads leads to OutOfMemoryError
— Threads compete with each other for resources

•  Better approach: use a thread pool
— Set of dedicated task-processing threads feeding off a common work

queue
— Enables effective resource management

COMP 322, Spring 2011 (V.Sarkar)	

7

java.util.concurrent.Executor interface"
•  Framework for asynchronous task execution
•  A design pattern with a single-method interface

— interface Executor { void execute(Runnable w); }

•  Separate work from workers (what vs how)
— ex.execute(work), not new Thread(..).start()

•  Cancellation and shutdown support
•  Usually created via Executors factory class

— Configures flexible ThreadPoolExecutor
— Customize shutdown methods, before/after hooks, saturation policies,

queuing
•  Normally use group of threads: ExecutorService

COMP 322, Spring 2011 (V.Sarkar)	

8

Think Tasks, not Threads"
•  Executor framework provides services for executing tasks in

threads
—  Runnable is an abstraction for tasks
—  Executor is an interface for executing tasks

•  Thread pools are specific kinds of executors
exec = Executors.newFixedThreadPool(nThreads);

 final Socket sock = server.accept();

 exec.execute(new Runnable() {

 public void run() {

 processRequest(sock);

 }});

— This will create a fixed-sized thread pool
— When those threads are busy, additional tasks submitted to

exec.execute() are queued up

COMP 322, Spring 2011 (V.Sarkar)	

9

Executor Framework Features"
•  There are a number of factory methods in Executors

—  newFixedThreadPool(n), newCachedThreadPool(),
newSingleThreadedExecutor()

•  Can also instantiate ThreadPoolExecutor directly
•  Can customize the thread creation and teardown behavior

— Core pool size, maximum pool size, timeouts, thread factory

•  Can customize the work queue
— Bounded vs unbounded
— FIFO vs priority-ordered

•  Can customize the saturation policy (queue full, maximum
threads)
— discard-oldest, discard-new, abort, caller-runs

•  Execution hooks for subclasses
—  beforeExecute(), afterExecute()

COMP 322, Spring 2011 (V.Sarkar)	

10

ExecutorService interface"

•  ExecutorService extends Executor interface with lifecycle
management methods e.g.,
—  shutdown()

Graceful shutdown – stop accepting tasks, finish
executing already queued tasks, then terminate

— shutdownNow()
Abrupt shutdown – stop accepting tasks, attempt to

cancel running tasks, don't start any new tasks,
return unstarted tasks

•  An ExeuctorService is a group of thread objects, each running
some variant of the following loop
—  while (…) { get work and run it; }

•  ExecutorService’s take responsibility for the threads they
create
— Service owner starts and shuts down ExecutorService
— ExecutorService starts and shuts down threads

COMP 322, Spring 2011 (V.Sarkar)	

11

Multi-Threaded Web Server with Executor
(1 of 3)"

public class PooledWebServer {

 private final ServerSocket server;

 private ExecutorService exec;

 public PooledWebServer(int port) throws IOException {

 server = new ServerSocket(port);

 server.setSoTimeout(5000);

 }

COMP 322, Spring 2011 (V.Sarkar)	

12

Multi-Threaded Web Server with Executor  
(2 of 3)"

public synchronized void startServer(int nThreads) {

 if (exec == null) {

 exec = Executors.newFixedThreadPool(nThreads + 1);

 exec.execute(new Runnable() { // nested async’s!

 public void run() {

 while (!Thread.interrupted()) {

 try {

 final Socket sock = server.accept();

 exec.execute(new Runnable() {

 public void run() { processRequest(sock); }

 });

 }
 catch (SocketTimeoutException e) { continue; }

 catch (IOException ex) { /* log it */ }

 }

 }

 });

 }

 }

COMP 322, Spring 2011 (V.Sarkar)	

13

Multi-Threaded Web Server with Executor  
(3 of 3)"

 public synchronized void stopServer()
 throws InterruptedException {

 if (exec == null)

 throw new IllegalStateException(); // never started

 if (!exec.isTerminated()) {

 exec.shutdown();

 exec.awaitTermination(5L, TimeUnit.SECONDS);

 server.close();

 }

 }
}

COMP 322, Spring 2011 (V.Sarkar)	

14

ThreadPoolExecutor

•  Sophisticated ExecutorService implementation with numerous
tuning parameters
— Core and maximum pool size

Thread created on task submission until core size reached
Additional tasks queued until queue is full
Thread created if queue full until maximum size reached
Note: unbounded queue means the pool won’t grow above core

size
— Keep-alive time

Threads above the core size terminate if idle for more than the
keep-alive time

In JDK 6 core threads can also terminate if idle
— Pre-starting of core threads, or else on demand

•  NOTE: the HJ work-sharing runtime system uses one ThreadPoolExecutor
per place to execute async tasks

COMP 322, Spring 2011 (V.Sarkar)	

15

Key Functional Groups in j.u.c."
•  Atomic variables

— The key to writing lock-free algorithms

•  Concurrent Collections:
— Queues, blocking queues, concurrent hash map, …
— Data structures designed for concurrent environments

•  Locks and Conditions
— More flexible synchronization control
— Read/write locks

•  Executors, Thread pools and Futures
— Execution frameworks for asynchronous tasking

•  Synchronizers: Semaphore, Latch, Barrier, Exchanger
— Ready made tools for thread coordination

COMP 322, Spring 2011 (V.Sarkar)	

16

j.u.c Synchronizers --- common patterns  
in HJʼs phaser construct"

•  Class library includes several state-dependent
synchronizer classes
—  CountDownLatch – waits until latch reaches terminal state
—  Semaphore – waits until permit is available
—  CyclicBarrier – waits until N threads rendezvous
—  Phaser – extension of CyclicBarrier with dynamic parallelism
—  Exchanger – waits until 2 threads rendezvous
—  FutureTask – waits until a computation has completed

•  These typically have three main groups of methods
— Methods that block until the object has reached the right

state
Timed versions will fail if the timeout expired
Many versions can be cancelled via interruption

— Polling methods that allow non-blocking interactions
— State change methods that may release a blocked method

COMP 322, Spring 2011 (V.Sarkar)	

17

Semaphores"
•  Conceptually serve as “permit” holders

— Construct with an initial number of permits
—  acquire: waits for permit to be available, then “takes” one
—  release: “returns” a permit
— But no actual permits change hands

The semaphore just maintains the current count
No need to acquire a permit before you release it

•  “fair” variant hands out permits in FIFO order
•  Supports balking and timed versions of acquire
•  Applications:

— Resource controllers
— Designs that otherwise encounter missed signals

Semaphores ‘remember’ how often they were signalled

COMP 322, Spring 2011 (V.Sarkar)	

18

Bounded Blocking Concurrent List
Example"

•  Concurrent list with fixed capacity
— Insertion blocks until space is available

•  Tracking free space, or available items, can be done using a
Semaphore

•  Demonstrates composition of data structures with library
synchronizers
— Much, much easier than modifying implementation of concurrent list

directly

COMP 322, Spring 2011 (V.Sarkar)	

19

Bounded Blocking Concurrent List"
 public class BoundedBlockingList {

 final int capacity;
 final ConcurrentLinkedList list =
 new ConcurrentLinkedList();
 final Semaphore sem;

 public BoundedBlockingList(int capacity) {
 this.capacity = capacity;
 sem = new Semaphore(capacity);
 }
 public void addFirst(Object x) throws
 InterruptedException {
 sem.acquire();
 try { list.addFirst(x); }
 catch (Throwable t){ sem.release(); rethrow(t); }
 }
 public boolean remove(Object x) {
 if (list.remove(x)) {
 sem.release(); return true;
 }
 return false;
 }
 …
}

COMP 322, Spring 2011 (V.Sarkar)	

20

Related work: Extension of HJʼs
Phasers to “Bounded Phasers”"

•  Bounded Phasers: Limit maximum phase difference between producers and
consumers for a phaser
— Add bound_size as a parameter in phaser constructor
— A signaling task blocks when it reaches the maximum phase difference

(can lead to deadlock)

phaser ph = new phaser(phaserMode.SIG_WAIT, 2 /*Bound size*/);"
async phased (ph<phaserMode.SIG>) { next; next; ... /*A1*/ }"
async phased (ph<phaserMode.WAIT>) { next; next; ... /*A2*/ }"

A1"
<sig>"

A2"
<wait>"

next;"
next;"

next;"
next;"next;"

next;"

A1 blocks after 2
outstanding signals"

COMP 322, Spring 2011 (V.Sarkar)	

21

Single-Producer Single-Consumer
Bounded Buffer using Bounded Phasers"

finish {!

 final phaser ph = new phaser(phaserMode.SIG_WAIT,
! ! ! !bound_size);!

 async phased (ph<phaserMode.SIG>) !

 while (…) { insert(); next; } // producer!

 async phased (ph<phaserMode.WAIT>)!

 while (…) { next; remove(); } // consumer!

}!

•  Can be extended to multiple producers and multiple consumers,
assuming synchronous merge in each phase

•  Extension to nondeterministic merge is more challenging

COMP 322, Spring 2011 (V.Sarkar)	

22

CountDownLatch

•  A counter that releases waiting threads when it reaches zero

— Allows one or more threads to wait for one or more events

— Initial value of 1 gives a simple gate or latch

CountDownLatch(int initialValue)

•  await: wait (if needed) until the counter is zero

— Timeout version returns false on timeout

•  countDown: decrement the counter if > 0

•  Query: getCount()

•  Very simple but widely useful:

— Replaces error-prone constructions ensuring that a group of threads all wait
for a common signal

COMP 322, Spring 2011 (V.Sarkar)	

23

Example: using j.u.c.CountDownLatch to
implement finish"

•  Problem: Run a task concurrently in N threads and wait until all
are complete
— Use a CountDownLatch initialized to the number of threads

 public static void runTask(int numThreads, final Runnable task)
 throws InterruptedException {

 final CountDownLatch done = new CountDownLatch(numThreads);

 for (int i=0; i<numThreads; i++) {

 Thread t = new Thread() {

 public void run() {

 try {
 task.run();
 } finally {
 done.countDown(); // I'm done

 }
 }};
 t.start();

 }

 done.await(); // wait for all threads to finish

 }

COMP 322, Spring 2011 (V.Sarkar)	

24

Summary: Relating j.u.c. libraries to HJ
constructs"

•  Executors
—  Executor

—  ExecutorService

—  ScheduledExecutorService

—  Callable

—  Future

—  ScheduledFuture

—  Delayed

—  CompletionService

—  ThreadPoolExecutor

—  ScheduledThreadPoolExecutor
—  AbstractExecutorService

—  Executors

—  FutureTask

—  ExecutorCompletionService

•  Queues
—  BlockingQueue

—  ConcurrentLinkedQueue

—  LinkedBlockingQueue

—  ArrayBlockingQueue

—  SynchronousQueue

—  PriorityBlockingQueue

—  DelayQueue

•  Atomics: java.util.concurrent.atomic
—  Atomic[Type]

—  Atomic[Type]Array

—  Atomic[Type]FieldUpdater

—  Atomic{Markable,Stampable}Reference

•  Concurrent Collections

—  ConcurrentMap

—  ConcurrentHashMap

—  CopyOnWriteArray{List,Set}

•  Locks: java.util.concurrent.locks
—  Lock

—  Condition

—  ReadWriteLock

—  AbstractQueuedSynchronizer

—  LockSupport

—  ReentrantLock

—  ReentrantReadWriteLock

•  Synchronizers
—  CountDownLatch

—  Semaphore

—  Exchanger

—  CyclicBarrier

Can be used as is in HJ
programs

Can be used as is in HJ
programs

Many uses of j.u.c.locks &
synchronized can be

replaced by HJ isolated

Many uses can be replaced
by phasers and data-

driven futures

Many uses can be
replaced by async,

finish, futures, forall

Do not use
BlockingQueue in HJ

programs, and take care
to avoid infinite loops on
retrieval operations on

non-blocking queues

