
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 32: Volatile variables and Java
memory model

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 32 8 April 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  Combined handout for Lectures 27-32 (to be updated)
•  “Introduction to Concurrent Programming in Java”, Joe Bowbeer, David

Holmes, OOPSLA 2007 tutorial slides
— Contributing authors: Doug Lea, Brian Goetz

— Contributing authors: Doug Lea, Tim Peierls, Brian Goetz

•  “Engineering Fine-Grained Parallelism Support for Java 7”, Doug Lea,
July 2010

•  “Java Concurrency in Practice”, Brian Goetz with Tim Peierls, Joshua Bloch,
Joseph Bowbeer, David Holmes and Doug Lea. Addison-Wesley, 2006.

COMP 322, Spring 2011 (V.Sarkar)	

3

Program Order != Reality"

•  Programmers view:
— Everything happens in the order I indicate through the code

statements that I write

•  Reality (JVM/compiler & processor):
— Everything happens in whatever order yields best performance,

so long as the program(mer) can’t tell the difference

•  For single-threaded systems:
— Program order can’t be distinguished from actual order

•  For multi-threaded systems:
— Without correct use of synchronization different threads can

see different actions in memory
At different times
In different orders

•  The Memory Model defines the rules

COMP 322, Spring 2011 (V.Sarkar)	

4

Memory Models"
•  A memory consistency model, or memory model, is the part of a

programming language specification that defines what write
values a read may see in the presence of data races.

•  We will briefly discuss three memory models
— Sequential Consistency (SC)
— Weak Ordering (WO)
— Java Memory Model (JMM)

COMP 322, Spring 2011 (V.Sarkar)	

5

Sequential Consistency (Lecture 6)"

COMP 322, Spring 2011 (V.Sarkar)	

6

Sequential Consistency"
•  SC constrains all memory operations:

–  Write → Read
–  Write → Write
–  Read → Read, Write

-  Simple model for reasoning about parallel programs

-  But, intuitively reasonable reordering of memory operations in a uniprocessor
may violate sequential consistency model
-  Modern microprocessors reorder operations all the time to obtain

performance e.g., write buffers, overlapped writes,non-blocking reads…
-  Optimizing compilers perform code transformations that have the effect

of reordering memory operations e.g., scalar replacement, register
allocation, instruction scheduling, …

-  A programmer may perform similar code transformations for software
engineering reasons without realizing that they are changing the program’s
semantics

COMP 322, Spring 2011 (V.Sarkar)	

7

Rolling your own Synchronization Primitives  
using Sequential Consistency"

data=1

flag=1

do while flag==0
end do

print data

Initially flag=0,data=0

Thread 1 Thread 2

α

β data=1

flag=1 do while flag==0
end do

print data

Thread 1 Thread 2

α

β

COMP 322, Spring 2011 (V.Sarkar)	

8

Print Example (Lecture 6)"
•  SC model will not permit Task T3 to print “0, 1, 2” and Task

T4 to print “0, 2, 1”

 p.x = 0; q = p;
 async p.x = 1; // Task T1
 async p.x = 2; // Task T2
 async { // Task T3
 System.out.println("First read = " + p.x);
 System.out.println("Second read = " + q.x);
 System.out.println("Third read = " + p.x);
 }
 async { // Task T4
 System.out.println("First read = " + p.x);
 System.out.println("Second read = " + p.x);
 System.out.println("Third read = " + p.x);
 }

COMP 322, Spring 2011 (V.Sarkar)	

9

Print Example (contd)"
•  What if the programmer transformed the body of Task T3?

 p.x = 0; q = p;
 async p.x = 1; // Task T1
 async p.x = 2; // Task T2
 async { // Task T3
 int p_x = p.x;

 System.out.println("First read = " + p_x);
 System.out.println("Second read = " + q.x);
 System.out.println("Third read = " + p_x);
 }
 async { // Task T4
 System.out.println("First read = " + p.x);
 System.out.println("Second read = " + p.x);
 System.out.println("Third read = " + p.x);
 }

COMP 322, Spring 2011 (V.Sarkar)	

10

-  Weak ordering:
-  Divide memory operations into data operations and synchronization

operations
-  Synchronization operations act like a ”fence”:

-  All data operations before synch in program order must complete before
synch is executed

-  All data operations after synch in program order must wait for synch to
complete

-  Synchs are performed in program order

-  Hardware implementation of fence: processor has counter that is
incremented when data op is issued, and decremented when data op is
completed

Weak Ordering"

COMP 322, Spring 2011 (V.Sarkar)	

11

But all these examples have races"

•  What if the programmers properly synchronizes the
application to avoid races?"
— Program will have same semantics under all memory models!"
— Programmer and implementation can assume a weak

consistency model (which will be equivalent to SC for data-
race-free programs)"

COMP 322, Spring 2011 (V.Sarkar)	

12

The Language Implementationʼs task"

•  Compiler must enforce programming language
memory model"
— Hardware and software model often differ "
— Compiler may need to insert fences to make hardware

model stricter"

Programmer

Multiprocessor Architecture

Programming
language model

Language Implementation
Hardware memory model

COMP 322, Spring 2011 (V.Sarkar)	

13

Volatile Variables"
•  Java provides a “light” form of synchronization/fence operations in

the form of volatile variables
•  Volatile variables guarantee visibility

— An access of a volatile variable is like an access of a synchronization
variable in the Weak Ordering model

— Adds serialization edges to computation graph due to isolated read/
write operations

•  Incrementing a volatile variable (++v) is not thread-safe
— Increment operation looks atomic, but isn’t (read and write are two

separate operations)

•  Volatile variables are best suited for flags that have no
dependencies

– volatile boolean asleep
– while (! asleep)
 ++sheep;

• Warning: a volatile declaration on an array variable may not give
you the semantics you expect

COMP 322, Spring 2011 (V.Sarkar)	

14

The Java Memory Model (JMM)"

•  Conceptually simple:
— Every time a variable is written, the value so written is added

to the set of all values the variable has had
— A read of a variable is allowed to return ANY value from the

set of written values

•  The JMM defines the rules by which values in the set are
removed
— Synchronization actions and happens-before relationship

•  Programmers goal: through proper use of synchronization
— Ensure the written set consists of only one value—that most

recently written by some thread

•  Basic safety guarantee: No “out-of-thin-air” values
— A read always returns a value written by some thread, some

time
— Reads and writes of all basic data types are atomic

Except for long and double

COMP 322, Spring 2011 (V.Sarkar)	

15

Synchronization Actions"

•  Program order: The order in which statements appear in a
program, as executed by a single thread
— Continue edges in a computation graph

•  Synchronization order: The order in which synchronization
actions are executed
— Always consistent with program order
— Determines a partial order across actions in different threads
— Spawn, join, and serialization edges in a computation graph

•  Example synchronization actions:
— Starting a thread; joining on a thread
— Acquiring a lock; releasing a lock

•  Some actions synchronize-with another action. Eg:
— Starting a thread synchronizes-with the first action in that

thread
— Releasing a lock synchronizes-with all subsequent acquires of

that lock

COMP 322, Spring 2011 (V.Sarkar)	

16

Happens-Before Relationship"

•  Formal relationship between reads and writes of variables
— Controls the possible values that a read of a variable may

return

•  For a given variable:
— If a write of the value v1 happens-before the write of a value

v2, and the write of v2 happens-before a read, then that read
may not return v1

— Properly ordered reads and writes ensure a read can only
return the most recently written value

•  If an action A synchronizes-with an action B then A
happens-before B
— So correct use of synchronization ensures a read can only

return the most recently written value

COMP 322, Spring 2011 (V.Sarkar)	

17

Example: Unsynchronized Data Holder"
– class DataHolder {
 int data = 0;
 boolean dataReady = false;
 boolean isReady() { return dataReady; }
 void setData(int newData) {
 data = newData;
 dataReady = true;
 }
 int getData() { return data; }
}
 DataHolder h = ...;

// ... Thread-1 // Thread-2
while (!h.isReady()) h.setData(42);
 doOtherWork();
int goodData = getData();

•  No synchronization actions between threads, so no
happens-before
— Thread-1 need never have isReady() return true
— Even if isReady() returns true, getData() may return 0 not

42

COMP 322, Spring 2011 (V.Sarkar)	

18

Example: Synchronized Data Holder"
– class SyncDataHolder {
 int data = 0;
 boolean dataReady = false;
 synchronized boolean isReady() {
 return dataReady; }
 synchronized void setData(int newData) {
 data = newData;
 dataReady = true;
 }
 synchronized int getData() { return data; }
}
 SyncDataHolder h = ...;

// ... Thread-1 // Thread-2
while (!h.isReady()) h.setData(42);
 doOtherWork();
int goodData = getData();

•  Synchronization ensures if isReady is true then getData
returns 42
— Note: synchronization on getData not needed iff isReady

always invoked first

COMP 322, Spring 2011 (V.Sarkar)	

19

volatile Variables"
•  Reads/writes of variables declared volatile are

synchronization actions

— A write to a volatile variable synchronizes-with all
subsequent reads of that volatile variable

— So volatile variables provide ordering and visibility
guarantees for themselves and any data they “protect”

•  Reads/writes of variables declared volatile are also
atomic

— Extends the basic atomicity guarantee from the 32-bit types
to the 64-bit types: long and double

— NOTE: compound actions are NOT atomic, Eg:

++ requires: read, increment, write

COMP 322, Spring 2011 (V.Sarkar)	

20

Example: volatile Data Holder"
– class VolatileDataHolder {
 volatile int data = 0;
 volatile boolean dataReady = false;
 boolean isReady() { return dataReady; }
 void setData(int newData) {
 data = newData;
 dataReady = true;
 }
 int getData() { return data; }
}
 VolatileDataHolder h = ...;

// ... Thread-1 // Thread-2
while (!h.isReady()) h.setData(42);
 doOtherWork();
int goodData = getData();

•  Use of volatile ensures if isReady is true then getData
returns 42
— Note: data field need not be volatile iff isReady always

invoked first AND dataReady field written after data field

