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Acknowledgments for Todayʼs Lecture"
•  Combined handout for Lectures 27-32 (to be updated) 
•  “Introduction to Concurrent Programming in Java”, Joe Bowbeer, David 

Holmes, OOPSLA 2007 tutorial slides 
— Contributing authors: Doug Lea, Brian Goetz 

— Contributing authors: Doug Lea, Tim Peierls, Brian Goetz 

•  “Engineering Fine-Grained Parallelism Support for Java 7”, Doug Lea, 
July 2010 

•  “Java Concurrency in Practice”, Brian Goetz with Tim Peierls, Joshua Bloch, 
Joseph Bowbeer, David Holmes and Doug Lea.  Addison-Wesley, 2006. 
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Program Order != Reality"

•  Programmers view: 
— Everything happens in the order I indicate through the code 

statements that I write 

•  Reality ( JVM/compiler & processor): 
— Everything happens in whatever order yields best performance, 

so long as the program(mer) can’t tell the difference 

•  For single-threaded systems: 
— Program order can’t be distinguished from actual order 

•  For multi-threaded systems: 
— Without correct use of synchronization different threads can 

see different actions in memory 
At different times 
In different orders 

•  The Memory Model defines the rules 
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Memory Models"
•  A memory consistency model, or memory model, is the part of a 

programming language specification that defines what write 
values a read may see in the presence of data races.   

•  We will briefly discuss three memory models 
— Sequential Consistency (SC) 
— Weak Ordering (WO) 
— Java Memory Model (JMM) 
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Sequential Consistency (Lecture 6)"
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Sequential Consistency"
•  SC constrains all memory operations: 

–  Write → Read 
–  Write → Write  
–  Read → Read, Write 

-  Simple model for reasoning about parallel programs 

-  But, intuitively reasonable reordering of memory operations  in a uniprocessor 
may violate sequential consistency model 
-  Modern microprocessors reorder operations all the time to obtain 

performance e.g., write buffers, overlapped writes,non-blocking reads… 
-  Optimizing compilers perform code transformations that have the effect 

of reordering memory operations e.g., scalar replacement, register 
allocation, instruction scheduling, … 

-  A programmer may perform similar code transformations for software 
engineering reasons without realizing that they are changing the program’s 
semantics 
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Rolling your own Synchronization Primitives  
using Sequential Consistency"

data=1 

flag=1 

do while flag==0 
end do 

print data 

Initially flag=0,data=0 

Thread 1 Thread 2 

α 

β data=1 

flag=1 do while flag==0 
end do 

print data 

Thread 1 Thread 2 

α 

β 
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Print Example (Lecture 6)"
•  SC model will not permit Task T3 to print “0, 1, 2” and Task 

T4 to print “0, 2, 1” 

  p.x = 0; q = p; 
  async p.x = 1; // Task T1 
  async p.x = 2; // Task T2 
  async { // Task T3 
    System.out.println("First read = " + p.x); 
    System.out.println("Second read = " + q.x); 
    System.out.println("Third read = " + p.x); 
  } 
   async { // Task T4 
    System.out.println("First read = " + p.x); 
    System.out.println("Second read = " + p.x); 
    System.out.println("Third read = " + p.x); 
  } 
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Print Example (contd)"
•  What if the programmer transformed the body of Task T3? 

  p.x = 0; q = p; 
  async p.x = 1; // Task T1 
  async p.x = 2; // Task T2 
  async { // Task T3 
  int p_x = p.x; 

    System.out.println("First read = " + p_x); 
    System.out.println("Second read = " + q.x); 
    System.out.println("Third read = " + p_x); 
  } 
   async { // Task T4 
    System.out.println("First read = " + p.x); 
    System.out.println("Second read = " + p.x); 
    System.out.println("Third read = " + p.x); 
  } 
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-  Weak ordering:  
-  Divide memory operations into data operations and synchronization 

operations 
-  Synchronization operations act like a ”fence”: 

-  All data operations before synch in program order must complete before 
synch is executed 

-  All data operations after synch in program order must wait for synch to 
complete 

-  Synchs are performed in program order 

-  Hardware implementation of fence: processor has counter that is 
incremented when data op is issued, and decremented when data op is 
completed 

Weak Ordering"
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But all these examples have races"

•  What if the programmers properly synchronizes the 
application to avoid races?"
— Program will have same semantics under all memory models!"
— Programmer and implementation can assume a weak 

consistency model (which will be equivalent to SC for data-
race-free programs)"
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The Language Implementationʼs task"

•  Compiler must enforce programming language 
memory model"
— Hardware and software model often differ "
— Compiler may need to insert fences to make hardware 

model stricter"

Programmer 

Multiprocessor Architecture 

Programming  
language model 

Language Implementation 
Hardware  memory model 



COMP 322, Spring 2011 (V.Sarkar)	

13 

Volatile Variables"
•  Java provides a “light” form of synchronization/fence operations in 

the form of volatile variables 
•  Volatile variables guarantee visibility 

— An access of a volatile variable is like an access of a synchronization 
variable in the Weak Ordering model 

— Adds serialization edges to computation graph due to isolated read/
write operations 

•  Incrementing a volatile variable (++v) is not thread-safe 
— Increment operation looks atomic, but isn’t (read and write are two 

separate operations) 

•  Volatile variables are best suited for flags that have no 
dependencies 

– volatile boolean asleep 
– while (! asleep) 
    ++sheep; 

• Warning: a volatile declaration on an array variable may not give 
you the semantics you expect 
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The Java Memory Model (JMM)"

•  Conceptually simple: 
— Every time a variable is written, the value so written is added 

to the set of all values the variable has had 
— A read of a variable is allowed to return ANY value from the 

set of written values 

•  The JMM defines the rules by which values in the set are 
removed 
— Synchronization actions and happens-before relationship 

•  Programmers goal: through proper use of synchronization 
— Ensure the written set consists of only one value—that most 

recently written by some thread 

•  Basic safety guarantee: No “out-of-thin-air” values 
— A read always returns a value written by some thread, some 

time 
— Reads and writes of all basic data types are atomic 

Except for long and double 
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Synchronization Actions"

•  Program order: The order in which statements appear in a 
program, as executed by a single thread 
— Continue edges in a computation graph 

•  Synchronization order: The order in which synchronization 
actions are executed  
— Always consistent with program order 
— Determines a partial order across actions in different threads 
— Spawn, join, and serialization edges in a computation graph 

•  Example synchronization actions: 
— Starting a thread; joining on a thread 
— Acquiring a lock; releasing a lock 

•  Some actions synchronize-with another action. Eg: 
— Starting a thread synchronizes-with the first action in that 

thread 
— Releasing a lock synchronizes-with all subsequent acquires of 

that lock 
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Happens-Before Relationship"

•  Formal relationship between reads and writes of variables 
— Controls the possible values that a read of a variable may 

return 

•  For a given variable: 
— If a write of the value v1 happens-before the write of a value 

v2, and the write of v2 happens-before a read, then that read 
may not return v1 

— Properly ordered reads and writes ensure a read can only 
return the most recently written value 

•  If an action A synchronizes-with an action B then A 
happens-before B 
— So correct use of synchronization ensures a read can only 

return the most recently written value 
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Example: Unsynchronized Data Holder"
– class DataHolder { 
  int data = 0; 
  boolean dataReady = false; 
  boolean isReady() { return dataReady; } 
  void setData(int newData) { 
    data = newData; 
    dataReady = true; 
  } 
  int getData() { return data; } 
} 
              DataHolder h = ...; 

// ... Thread-1                 // Thread-2 
while (!h.isReady())            h.setData(42); 
   doOtherWork(); 
int goodData = getData();      

•  No synchronization actions between threads, so no 
happens-before 
— Thread-1 need never have isReady() return true 
— Even if isReady() returns true, getData() may return 0 not  

42 
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Example: Synchronized Data Holder"
– class SyncDataHolder { 
  int data = 0; 
  boolean dataReady = false; 
  synchronized boolean isReady() {  
    return dataReady; } 
  synchronized void setData(int newData) { 
    data = newData; 
    dataReady = true; 
  } 
  synchronized int getData() { return data; } 
} 
            SyncDataHolder h = ...; 

// ... Thread-1                 // Thread-2 
while (!h.isReady())            h.setData(42); 
   doOtherWork(); 
int goodData = getData();      

•  Synchronization ensures if isReady is true then getData 
returns 42 
— Note: synchronization on getData not needed iff isReady 

always invoked first 
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volatile Variables"
•  Reads/writes of variables declared volatile are 

synchronization actions 

— A write to a volatile variable synchronizes-with all 
subsequent reads of that volatile variable 

— So volatile variables provide ordering and visibility 
guarantees for themselves and any data they “protect” 

•  Reads/writes of variables declared volatile are also 
atomic 

— Extends the basic atomicity guarantee from the 32-bit types 
to the 64-bit types: long and double 

— NOTE: compound actions are NOT atomic, Eg: 

++ requires: read, increment, write 
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Example: volatile Data Holder"
– class VolatileDataHolder { 
  volatile int data = 0; 
  volatile boolean dataReady = false; 
  boolean isReady() { return dataReady; } 
  void setData(int newData) { 
    data = newData; 
    dataReady = true; 
  } 
  int getData() { return data; } 
} 
           VolatileDataHolder h = ...; 

// ... Thread-1                 // Thread-2 
while (!h.isReady())            h.setData(42); 
   doOtherWork(); 
int goodData = getData();      

•  Use of volatile ensures if isReady is true then getData 
returns 42 
— Note: data field need not be volatile iff isReady always 

invoked first AND dataReady field written after data field 


