COMP 322: Fundamentals of

Parallel Programming
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 35: Liveness and Progress
Guarantees for Parallel Programs

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

COMP 322 Lecture 35 15 April 2011 @

Acknowledgments for Today’s Lecture

Maurice Herlihy and Nir Shavit. The art of multiprocessor

programming. Morgan Kaufmann, 2008.

—Optional text for COMP 322

—Slides and code examples extracted from
http://www.elsevierdirect.com/companion. jsp?ISBN=9780123705914

“Synchronization and Concurrency for User-level Systems”,
William N. Scherer III, Ph.D. Defense, U. Rochester,
December 2005

“The Java Tutorials --- Concurrency”
—http://download.oracle.com/ javase/tutorial/essential/concurrency
“Introduction to Synchronization”, Klara Nahrstedt, CS 241
Lecture 10, Spring 2007
—www.cs.uiuc.edu/class/sp07/cs241/Lectures/10.sync.ppt

COMP 322, Spring 2011 (V.Sarkar) @

Page 1

Announcements

* Homework 7 due by 5pm on Friday, April 22"

—Send email to comp322-staff if you're running into issues with
accessing SUG@R nodes, or anything else

COMP 322, Spring 2011 (V.Sarkar) @

Desirable Properties of Parallel Program
Executions

Data-race freedom (Lecture 6)
* Termination

* But some applications are designed to be non-
terminating

* Liveness = a program's ability to make progress in a
timely manner

Different levels of liveness guarantees (from weaker
to stronger)

—Deadlock freedom
—Livelock freedom
—Starvation freedom
—Bounded wait

COMP 322, Spring 2011 (V.Sarkar) @

Page 2

Terminating Parallel Program Executions

* A parallel program execution is terminating if all sequential tasks in the
program terminate

Example of a program with a nonterminating execution
. p-x = false:
. finish {
async { // S1
boolean b = false; do { isolated b = p.x; } while (! b):
}
isolated p.x = true; // S2
. }// finish

Nooaswn =

* Some executions of this program may be terminating, and some not

* Cannot assume in general that statement S2 will ever get a chance to
execute if async S1 is nonterminating e.g., consider case when
program is run with one worker (-places 1:1)

5 COMP 322, Spring 2011 (V.Sarkar) @

Deadlock-Free Parallel Program Executions

* A parallel program execution is deadlock-free if no task's execution
remains incomplete due to it being blocked awaiting some condition

* Example of a program with a deadlocking execution
DataDrivenFuture left = new DataDrivenFuture();
DataDrivenFuture right = new DataDrivenFuture();
finish {

async await (left) right.put(rightBuilder()): // Task1
async await (right) left.put(leftBuilder()). // Task2
}

* In this case, Taskl and Task2 are in a deadlock cycle. There are
many mechanisms (e.g., locks) that can lead to deadlock cycles.

— No deadlock cycle possible with finish, isolated, phasers, and
async's without await clauses

- future async’s and phased async’s are fine

COMP 322, Spring 2011 (V.Sarkar) @

Page 3

Livelock-Free Parallel Program Executions

* A parallel program execution exhibits livelock if two or more tasks
repeat the same interactions without making any progress (special case
of nontermination)

* Livelock example:

— Source: http://stackoverflow.com/questions/1036364/good-example-of -livelock

// Thread 1 // Thread 2
getlocks12(lockl, lock2) { getlocks21(lock2, lockl) {
lock1 .lock(): lock2.lock():
while (lock2.locked()) { while (lock1.locked()) {
// attempt to yield to other thread // attempt to yield to other thread
lock1 .unlock(): wait(): lock1.lock(): lock2.unlock(): wait(); lock2.lock():
} lock2.lock(): } lock1.lock():
}

* Many well-intended approaches to avoid deadlock result in livelock
instead

* A practical heuristic (but not a guarantee) for avoiding livelock is to
introduce randomization in distribution of requests

* Any data-race-free HJ program without isolated is guaranteed to be
livelock-free (may be nonterminating in a single task, however)

COMP 322, Spring 2011 (V.Sarkar) @

Starvation-Free Parallel Program
Executions

* A parallel program execution exhibits starvation if some task is
repeatedly denied the opportunity to make progress

— Starvation-freedom is sometimes referred to as “lock-out freedom”
* Common source of starvation: adjustment of priorities

* Classic "Priority Inversion” problem

—Thread A is at high priority, waiting for result or resource from
Thread C at low priority

—Thread B at intermediate priority is CPU-bound
—Thread C never runs, hence thread A never runs

—Fix: when a high priority thread waits for a low priority thread,
boost the priority of the low-priority thread

COMP 322, Spring 2011 (V.Sarkar) @

Page 4

Bounded Wait

* A parallel program execution exhibits bounded wait if each task
requesﬁng a resource should only have to wait for a bounded

number o

other tasks to “cut in line” i.e., to gain access to

the resource after its request has been registered.

* If bound = O, then the program execution is fair

COMP 322, Spring 2011 (V.Sarkar)

Are there doo
locks?

Page 5

Progress

ell, Did yo
see anybody
go in?

* Progress?

* Bounded Wait?

What's the difference?

11

COMP 322, Spring 2011 (V.Sarkar)

* Progress?
—If no process is

waiting

for a

access

resource and several
processes are
requesting access to
the resource, then

resource cannot be
postponed
indefinitely

to the

12

COMP 322, Spring 2011 (V.Sarkar)

Page 6

. Boune i1'?

—A process
requesting
access to a
resource should
only have to wait
for a bounded
number of other
processes to
access the
resource that

— requested access
= after it

, Spfig 2011 (V.Sarkar) i

Related Concepts

* A resource is said to be wait-free if it is starvation-free,
livelock-free, and deadlock-free

* A resource is said to be lock-free if it is livelock-free and
deadlock-free

* A resource is said to be obstruction-free if it is deadlock-free

14 COMP 322, Spring 2011 (V.Sarkar) i

Page 7

