
Page 1

COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 38: Course Review
(Second half of semester)

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 38 22 April 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Announcements!
•  Homework 7 due by 5pm today

— Send email to comp322-staff if you’re running into issues with
accessing SUG@R nodes, or are delayed for any other reason

•  Take-home final exam will be given at the end of today’s
lecture
— Content will focus on second half of semester

–  Knowledge of supporting content from first half of semester will
be assumed e.g., async, finish, isolated, forall, critical-path-
length and work metrics

–  This week’s lectures on MPI will not be included in the exam
— Due by 5pm on Friday, April 29th

Page 2

COMP 322, Spring 2011 (V.Sarkar)	

3

Table 1: Methods in java.util.concurrent atomic classes
AtomicInteger and AtomicIntegerArray (Lecture 19)!

COMP 322, Spring 2011 (V.Sarkar)	

4

Parallel Depth-First Search Spanning Tree  
Example w/ isolated construct!

1.   class V {!
2.   V [] neighbors; // adjacency list for input graph!
3.   V parent; // output value of parent in spanning tree!
4.   boolean tryLabeling(V n) {!
5.   isolated if (parent == null) parent=n;!
6.   return parent == n;!
7.   } // tryLabeling!
8.   void compute() {!
9.   for (int i=0; i<neighbors.length; i++) { !
10.   V child = neighbors[i]; !
11.   if (child.tryLabeling(this))!
12.   async child.compute(); //escaping async!
13.   } !
14.   } // compute!
15.  } // class V!
16.  . . .!
17.  root.parent = root; // Use self-cycle to identify root!
18.  finish root.compute();!
19.  . . .!

Page 3

COMP 322, Spring 2011 (V.Sarkar)	

5

Parallel Depth-First Search Spanning Tree  
Example w/ AtomicReference!

1.   class V {!
2.   V [] neighbors; // adjacency list for input graph!
3.   AtomicReference parent; // output value of parent in spanning tree!
4.   boolean tryLabeling(V n) {!
5.   return parent.compareAndSet(null ,n);!
6.   !
7.   } // tryLabeling!
8.   void compute() {!
9.   for (int i=0; i<neighbors.length; i++) { !
10.   V child = neighbors[i]; !
11.   if (child.tryLabeling(this))!
12.   async child.compute(); //escaping async!
13.   } !
14.   } // compute!
15.  } // class V!
16.  . . .!
17.  root.parent = root; // Use self-cycle to identify root!
18.  finish root.compute();!
19.  . . .!

COMP 322, Spring 2011 (V.Sarkar)	

6

java.util.concurrent.concurrentHashMap 
(Lecture 20)!

•  Implements ConcurrentMap sub-interface of Map
•  Allows read (traversal) and write (update) operations to overlap

with each other
•  Some operations are atomic with respect to each other e.g.,

— get(), put(), putIfAbsent(), remove()

•  Aggregate operations may not be viewed atomically by other
operations e.g.,
— putAll(), clear()

•  Expected degree of parallelism can be specified in
ConcurrentHashMap constructor
— ConcurrentHashMap(initialCapacity, loadFactor, concurrencyLevel)
— A larger value of concurrencyLevel results in less serialization, but

a larger space overhead for storing the ConcurrentHashMap

Page 4

COMP 322, Spring 2011 (V.Sarkar)	

7

Example usage of ConcurrentHashMap in
org.mirrorfinder.model.BaseDirectory!

COMP 322, Spring 2011 (V.Sarkar)	

8

java.util.concurrent.ConcurrentLinkedQueue  
(Lecture 20)!

•  Queue interface added to java.util
–  interface Queue extends Collection and includes

 boolean offer(E x); // same as add() in Collection
 E poll(); // remove head of queue if non-empty
 E remove(o) throws NoSuchElementException;
 E peek(); // examine head of queue without removing it

•  Non-blocking operations
— Return false when full
— Return null when empty

•  Fast thread-safe non-blocking implementation of Queue
interface: ConcurrentLinkedQueue

Page 5

COMP 322, Spring 2011 (V.Sarkar)	

9

Example usage of ConcurrentLinkedQueue in
org.apache.catalina.tribes.io.BufferPool15Impl!

COMP 322, Spring 2011 (V.Sarkar)	

10

Informal definition of Linearizability
(Lecture 21)!

1. A linearizable execution is one in which the
semantics of a set of method calls performed in
parallel on a concurrent object is equivalent to that
of some legal linear sequence of those method calls.

2. A linearizable concurrent object is one for which all
possible executions are linearizable.

Page 6

COMP 322, Spring 2011 (V.Sarkar)	

11

Table 1: Example execution of a monitor-
based implementation of FIFO queue q!

Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

COMP 322, Spring 2011 (V.Sarkar)	

12

Table 3: Example of a non-linearizable
execution on a concurrent FIFO queue q!

Is this a linearizable execution?

•  No! q.enq(x) must precede q.enq(y) in all linear sequences of
method calls invoked on q. It is illegal for the q.deq()
operation to return y.

Page 7

COMP 322, Spring 2011 (V.Sarkar)	

13

Places in HJ (Lecture 22)!
here = place at which current task is executing
place.MAX_PLACES = total number of places (runtime constant)"

Specified by value of p in runtime option, -places p:w"

place.factory.place(i) = place corresponding to index i"
<place-expr>.toString() returns a string of the form “place(id=0)”"
<place-expr>.id returns the id of the place as an int"

async at(P) S!
•  Creates new task to execute statement S at place P"
•  async S is equivalent to async at(here) S"

Note that here in a child task for an async/future computation
will refer to the place P at which the child task is executing,
not the place where the parent task is executing

COMP 322, Spring 2011 (V.Sarkar)	

14

Listing 1: Example HJ program with places!

Page 8

COMP 322, Spring 2011 (V.Sarkar)	

15

Distributions (Lecture 23)!
•  A distribution maps points in a rectangular index space (region)

to places e.g.,
— i  place.factory.place(i % place.MAX_PLACES-1)

•  Programmers are free to create any data structure they choose
to store and compute these mappings

•  For convenience, the HJ language provides a predefined type,
hj.lang.dist, to simplify working with distributions

•  Some public members available in an instance d of hj.lang.dist
are as follows
— d.rank = number of dimensions in the input region for distribution d
— d.get(p) = place for point p mapped by distribution d. It is an error

to call d.get(p) if p.rank != d.rank.
— d.places() = set of places in the range of distribution d
— d.restrictToRegion(pl) = region of points mapped to place pl by

distribution d

COMP 322, Spring 2011 (V.Sarkar)	

16

Block Distribution!
•  dist.factory.block([lo:hi]) creates a block distribution over the

one-dimensional region, lo:hi.
•  A block distribution splits the region into contiguous subregions,

one per place, while trying to keep the subregions as close to
equal in size as possible.

•  Block distributions can improve the performance of parallel loops
that exhibit spatial locality across contiguous iterations.

•  Example in Table 1: dist.factory.block([0:15]) for 4 places

Page 9

COMP 322, Spring 2011 (V.Sarkar)	

17

Cyclic Distribution!
•  dist.factory.cyclic([lo:hi]) creates a cyclic distribution over the

one-dimensional region, lo:hi.
•  A cyclic distribution “cycles” through places 0 … place.MAX

PLACES − 1 when spanning the input region
•  Cyclic distributions can improve the performance of parallel

loops that exhibit load imbalance
•  Example in Table 3: dist.factory.cyclic([0:15]) for 4 places

•  Example in Table 4: dist.factory.cyclic([0:7,0:1]) for 4 places

COMP 322, Spring 2011 (V.Sarkar)	

18

MapReduce: The Map Step (Lecture 24)!

v k

k' v'

k' v'
map

v k

v k

…
k' v'

map

Input set of
key-value pairs

Flattened intermediate
set of key-value pairs

…

k' v' map

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

Page 10

COMP 322, Spring 2011 (V.Sarkar)	

19

MapReduce: The Reduce Step!

k' v'

…

k' v'

k' v'

k' v'

Intermediate
key-value pairs

group

reduce

reduce
k' v''

v''

v''

…

k' v'

…

k' v'

k' v' v'

v' v'

Key-value groups
Output
key-value pairs

k'

k'

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

COMP 322, Spring 2011 (V.Sarkar)	

20

HJ Data-Driven Futures (Lecture 25)!
ddfA = new DataDrivenFuture()
•  Allocate an instance of a DDF object (container)
async await(ddfA, ddfB, …) <Stmt>
•  Create a new async task to start executing Stmt after all of ddfA,

ddfB, … become available
•  Task is said to be enabled when ddfA, ddfB, … become available
ddfA.put(V)
•  Store object V in ddfA, thereby making ddfA available
•  Single-assignment rule: at most one put is permitted on a given DDF
ddfA.get()
•  Return value stored in ddfA
•  Can only be performed by async’s that contain ddfA in their await

clause (no blocking is necessary)

Page 11

COMP 322, Spring 2011 (V.Sarkar)	

21

Figure 2: Example Habanero Java code
fragment with Data-Driven Futures!

DataDrivenFuture left = new DataDrivenFuture();
DataDrivenFuture right = new DataDrivenFuture();
finish {
 async left.put(leftBuilder()); // Task1
 async right.put(rightBuilder()); // Task2
 async await (left) leftReader(left); // Task3
 async await (right) rightReader(right); // Task5
 async await (left, right)

 bothReader(left, right); // Task4
}

COMP 322, Spring 2011 (V.Sarkar)	

22

Listing 1: use of DDFs with empty objects!

Page 12

COMP 322, Spring 2011 (V.Sarkar)	

23

java.lang.Thread class (Lecture 27)!
•  Execution of a Java program begins with an instance of Thread

created by the Java Virtual Machine (JVM) that executes the
program’s main() method.

•  Parallelism can be introduced by creating additional instances of
class Thread that execute as parallel threads.

COMP 322, Spring 2011 (V.Sarkar)	

24

Objects and Locks in Java --- 
synchronized statements and methods (Lecture 28)!

•  Every Java object has an associated lock acquired via:
—  synchronized statements

–  synchronized(foo){
 // execute code while holding foo’s lock
}

—  synchronized methods
–  public synchronized void op1(){

 // execute op1 while holding ‘this’ lock
}

•  Language does not enforce any relationship between object used for
locking and objects accessed in isolated code
— If same object is used for locking and data access, then the object

behaves like monitors
•  Locking and unlocking are automatic

— Locks are released when a synchronized block exits
By normal means: end of block reached, return, break
When an exception is thrown and not caught

Page 13

COMP 322, Spring 2011 (V.Sarkar)	

25

Example: Obvious Deadlock!
•  This code can deadlock if leftHand() and rightHand() are called

concurrently from different threads
—  Because the locks are not acquired in the same order

 public class ObviousDeadlock {
 . . .

 public void leftHand() {

 synchronized(lock1) {

 synchronized(lock2) {

 for (int i=0; i<10000; i++)

 sum += random.nextInt(100);

 }

 }

 }

 public void rightHand() {

 synchronized(lock2) {

 synchronized(lock1) {

 for (int i=0; i<10000; i++)

 sum += random.nextInt(100);

 }

 }

 }

 }

COMP 322, Spring 2011 (V.Sarkar)	

26

Dynamic Order Deadlocks!
•  There are even more subtle ways for threads to deadlock due to inconsistent

lock ordering
— Consider a method to transfer a balance from one account to another:
public class SubtleDeadlock {
 public void transferFunds(Account from,
 Account to,
 int amount) {
 synchronized (from) {
 synchronized (to) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }
 }

— What if one thread tries to transfer from A to B while another tries to
transfer from B to A ?

Inconsistent lock order again – Deadlock!

Page 14

COMP 322, Spring 2011 (V.Sarkar)	

27

The Java wait() Method (Lecture 29)!
•  A thread can perform a wait() method on an object that it

owns:
1.  the thread releases the object lock
2.  thread state is set to blocked
3.  thread is placed in the wait set

•  Causes thread to wait until another thread invokes the notify()
method or the notifyAll() method for this object.

•  Since interrupts and spurious wakeups are possible, this
method should always be used in a loop e.g.,

 synchronized (obj) {
 while (<condition does not hold>)
 obj.wait();
 ... // Perform action appropriate to condition
 }

COMP 322, Spring 2011 (V.Sarkar)	

28

Entry and Wait Sets!

Page 15

COMP 322, Spring 2011 (V.Sarkar)	

29

The notify() Method!
When a thread calls notify(), the following occurs:

1.  selects an arbitrary thread T from the wait set
2.  moves T to the entry set
3.  sets T to Runnable

T can now compete for the object’s lock again

COMP 322, Spring 2011 (V.Sarkar)	

30

Multiple Notifications!
•  notify() selects an arbitrary thread from the wait set.

*This may not be the thread that you want to be selected.
•  Java does not allow you to specify the thread to be selected
•  notifyAll() removes ALL threads from the wait set and places

them in the entry set. This allows the threads to decide among
themselves who should proceed next.

•  notifyAll() is a conservative strategy that works best when
multiple threads may be in the wait set

Page 16

COMP 322, Spring 2011 (V.Sarkar)	

31

java.util.concurrent.Executor interface  
(Lecture 31)!

•  Framework for asynchronous task execution
•  A design pattern with a single-method interface

— interface Executor { void execute(Runnable w); }

•  Separate work from workers (what vs how)
— ex.execute(work), not new Thread(..).start()

•  Cancellation and shutdown support
•  Usually created via Executors factory class

— Configures flexible ThreadPoolExecutor
— Customize shutdown methods, before/after hooks, saturation policies,

queuing
•  Normally use group of threads: ExecutorService

COMP 322, Spring 2011 (V.Sarkar)	

32

Executor Framework Features!
•  There are a number of factory methods in Executors

—  newFixedThreadPool(n), newCachedThreadPool(),
newSingleThreadedExecutor()

•  Can also instantiate ThreadPoolExecutor directly
•  Can customize the thread creation and teardown behavior

— Core pool size, maximum pool size, timeouts, thread factory

•  Can customize the work queue
— Bounded vs unbounded
— FIFO vs priority-ordered

•  Can customize the saturation policy (queue full, maximum
threads)
— discard-oldest, discard-new, abort, caller-runs

•  Execution hooks for subclasses
—  beforeExecute(), afterExecute()

Page 17

COMP 322, Spring 2011 (V.Sarkar)	

33

ExecutorService interface!

•  ExecutorService extends Executor interface with lifecycle
management methods e.g.,
—  shutdown()

Graceful shutdown – stop accepting tasks, finish
executing already queued tasks, then terminate

— shutdownNow()
Abrupt shutdown – stop accepting tasks, attempt to

cancel running tasks, don't start any new tasks,
return unstarted tasks

•  An ExeuctorService is a group of thread objects, each running
some variant of the following loop
—  while (…) { get work and run it; }

•  ExecutorService’s take responsibility for the threads they
create
— Service owner starts and shuts down ExecutorService
— ExecutorService starts and shuts down threads

COMP 322, Spring 2011 (V.Sarkar)	

34

Volatile Variables (Lecture 32)!
•  Java provides a “light” form of synchronization/fence operations in

the form of volatile variables
•  Volatile variables guarantee visibility

— An access of a volatile variable is like an access of a synchronization
variable in the Weak Ordering model

— Adds serialization edges to computation graph due to isolated read/
write operations

•  Incrementing a volatile variable (++v) is not thread-safe
— Increment operation looks atomic, but isn’t (read and write are two

separate operations)

•  Volatile variables are best suited for flags that have no
dependencies

– volatile boolean asleep
– while (! asleep)
 ++sheep;

• Warning: a volatile declaration on an array variable may not give
you the semantics you expect

Page 18

COMP 322, Spring 2011 (V.Sarkar)	

35

COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 33: GPGPU Programming with
CUDA

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 33 11 April 2011

COMP 322, Spring 2011 (V.Sarkar)	

36

CPUs and GPUs have fundamentally
different design philosophies (Lecture 33)!

DRAM

Co
Ca A A A A A A A A A A A A A A A A

Streaming Multiprocessor

Cache

ALU
Control

ALU

ALU

ALU

DRAM

Single CPU core Multiple GPU processors

Page 19

COMP 322, Spring 2011 (V.Sarkar)	

37

Process Flow of a CUDA Kernel Call
(Figure 2)!

•  Data parallel programming architecture from
NVIDIA
— Execute programmer-defined kernels on

extremely parallel GPUs
— CUDA program flow:

1.  Push data on device
2.  Launch kernel
3.  Execute kernel and memory accesses in

parallel
4.  Pull data off device

•  Device threads are launched in batches
— Blocks of Threads, Grid of Blocks

•  Explicit device memory management
— cudaMalloc, cudaMemcpy, cudaFree, etc.

37

Figure source: Y. Yan et. al “JCUDA: a
Programmer Friendly Interface for
Accelerating Java Programs with CUDA.”
Euro-Par 2009.

COMP 322, Spring 2011 (V.Sarkar)	

38

Execution of a CUDA program (Figure 3)!
•  Integrated host+device application

—  Serial or modestly parallel parts on CPU host
—  Highly parallel kernels on GPU device

Host Code
(small number of threads)‏

. . .

. . .

Device Kernel
(large number of threads)

Host Code
(small number of threads)‏

Device Kernel
(large number of threads)

Host Code
(small number of threads)‏

Page 20

COMP 322, Spring 2011 (V.Sarkar)	

39

Logical Structure of a CUDA kernel
invocation (Listing 1)!

COMP 322, Spring 2011 (V.Sarkar)	

40

Organization of a CUDA grid 
(Figure 4)!

async at(GPU)

async at(GPU)

forall(blockIdx)

forall(threadIdx)

Page 21

COMP 322, Spring 2011 (V.Sarkar)	

41

Impact of Single Control Unit for a Block of
Threads executing on an SM (Lecture 34)

Control flow example
if (threadIdx >= 2) {
 out[threadIdx] += 100;
}
else {
 out[threadIdx] += 10;
}

P0
Control
Unit P!

PM-
1

Re
g ...

Memory

Re
g

Re
g compare

threadIdx,2

SIMD = Single Instruction Multiple Data

COMP 322, Spring 2011 (V.Sarkar)	

42

SIMD Execution of Control Flow
Control flow example
if (threadIdx.x >= 2) {
 out[threadIdx.x] += 100;
}
else {
 out[threadIdx.x] += 10;
}

P0

Instructio
n

Unit
P!

PM-
1

Re
g ...

Memory

Re
g

Re
g

/* Condition code cc =
true branch set by
predicate execution */
(CC) LD R5,
 &(out
+threadIdx.x)
(CC) ADD R5, R5, 100
(CC) ST R5,
 &(out
+threadIdx.x)

X X ✔ ✔

Page 22

COMP 322, Spring 2011 (V.Sarkar)	

43

SIMD Execution of Control Flow
Control flow example
if (threadIdx >= 2) {
 out[threadIdx] += 100;
}
else {
 out[threadIdx] += 10;
}

P0

Instructio
n

Unit
P!

PM-
1

Re
g ...

Memory

Re
g

Re
g

/* possibly predicated
using CC */
(not CC) LD R5,
 &(out
+threadIdx)
(not CC) ADD R5, R5,
10
(not CC) ST R5,
 &(out
+threadIdx)

✔ ✔ X X

COMP 322, Spring 2011 (V.Sarkar)	

44

Divergence
•  Divergent paths

— What happens if different threads within a block take different
control flow paths?

— N divergent paths
–  An N-way divergent block is serially issued over the N

different paths
–  Performance decreases by about a factor of N
–  GPU is better suited for blocks of threads with low intra-block

divergence
–  Multicore CPU is better equipped to handle divergence than CPU

•  Implementation note
— Current GPUs subdivide a block of threads into “warps” of a fixed

size (e.g., 32 or 64)
— Divergence can be tolerated among threads in different warps, but

not among threads in the same warp
— If you avoid divergence within a block, you will also guarantee the

absence of divergence within a warp

Page 23

COMP 322, Spring 2011 (V.Sarkar)	

45

Desirable Properties of Parallel Program
Executions (Lecture 35)!

•  Data-race freedom (Lecture 6)
•  Termination

•  But some applications are designed to be non-
terminating

•  Liveness = a program’s ability to make progress in a
timely manner

•  Different levels of liveness guarantees (from weaker
to stronger)
— Deadlock freedom
— Livelock freedom
— Starvation freedom
— Bounded wait

COMP 322, Spring 2011 (V.Sarkar)	

46

Scope of Course (Lecture 1)!
•  Fundamentals of parallel programming

—  Task creation and termination, computation graphs, scheduling theory,
futures, forall parallel loops, barrier synchronization (phasers), isolation &
mutual exclusion, task affinity, bounded buffers, data flow, threads, data
races, deadlock, memory models

•  Introduction to parallel algorithms
•  Habanero-Java (HJ) language, developed in the Habanero Multicore

Software Research project at Rice
•  Abstract executable performance model for HJ programs
•  Java Concurrency
•  Written assignments
•  Programming assignments

—  Abstract metrics
—  Real parallel systems (8-core Intel, Rice SUG@R system)

•  Beyond HJ and Java: introduction to CUDA and MPI

