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Announcements!
•  Homework 7 due by 5pm today 

— Send email to comp322-staff if you’re running into issues with 
accessing SUG@R nodes, or are delayed for any other reason 

•  Take-home final exam will be given at the end of today’s 
lecture 
— Content will focus on second half of semester 

–  Knowledge of supporting content from first half of semester will 
be assumed e.g., async, finish, isolated, forall, critical-path-
length and work metrics 

–  This week’s lectures on MPI will not be included in the exam 
— Due by 5pm on Friday, April 29th  
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Table 1: Methods in java.util.concurrent atomic classes 
AtomicInteger and AtomicIntegerArray (Lecture 19)!
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Parallel Depth-First Search Spanning Tree  
Example w/ isolated construct!

1.   class V  {!
2.     V [] neighbors; // adjacency list for input graph!
3.     V parent;     // output value of parent in spanning tree!
4.     boolean tryLabeling(V n) {!
5.       isolated if (parent == null) parent=n;!
6.       return parent == n;!
7.     } // tryLabeling!
8.     void compute() {!
9.       for (int i=0; i<neighbors.length; i++) { !
10.        V child = neighbors[i];  !
11.        if (child.tryLabeling(this))!
12.            async child.compute(); //escaping async!
13.       } !
14.    } // compute!
15.  } // class V!
16.  . . .!
17.  root.parent = root; // Use self-cycle to identify root!
18.  finish root.compute();!
19.  . . .!
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Parallel Depth-First Search Spanning Tree  
Example w/ AtomicReference!

1.   class V  {!
2.     V [] neighbors; // adjacency list for input graph!
3.     AtomicReference parent; // output value of parent in spanning tree!
4.     boolean tryLabeling(V n) {!
5.       return parent.compareAndSet(null ,n);!
6.       !
7.     } // tryLabeling!
8.     void compute() {!
9.       for (int i=0; i<neighbors.length; i++) { !
10.        V child = neighbors[i];  !
11.        if (child.tryLabeling(this))!
12.            async child.compute(); //escaping async!
13.       } !
14.    } // compute!
15.  } // class V!
16.  . . .!
17.  root.parent = root; // Use self-cycle to identify root!
18.  finish root.compute();!
19.  . . .!
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java.util.concurrent.concurrentHashMap 
(Lecture 20)!

•  Implements ConcurrentMap sub-interface of Map 
•  Allows read (traversal) and write (update) operations to overlap 

with each other 
•  Some operations are atomic with respect to each other e.g., 

— get(), put(), putIfAbsent(), remove() 

•  Aggregate operations may not be viewed atomically by other 
operations e.g., 
— putAll(), clear() 

•  Expected degree of parallelism can be specified in 
ConcurrentHashMap constructor 
— ConcurrentHashMap(initialCapacity, loadFactor, concurrencyLevel) 
— A larger value of concurrencyLevel results in less serialization, but 

a larger space overhead for storing the ConcurrentHashMap 
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Example usage of ConcurrentHashMap in 
org.mirrorfinder.model.BaseDirectory!
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java.util.concurrent.ConcurrentLinkedQueue  
(Lecture 20)!

•  Queue interface added to java.util 
–   interface Queue extends Collection and includes 

    boolean offer(E x); // same as add() in Collection 
 E poll(); // remove head of queue if non-empty 
 E remove(o) throws NoSuchElementException; 
 E peek(); // examine head of queue without removing it 

•  Non-blocking operations 
— Return false when full 
— Return null when empty 

•  Fast thread-safe non-blocking implementation of Queue 
interface: ConcurrentLinkedQueue 
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Example usage of ConcurrentLinkedQueue in 
org.apache.catalina.tribes.io.BufferPool15Impl!
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Informal definition of Linearizability
(Lecture 21)!

1. A linearizable execution is one in which the 
semantics of a set of method calls performed in 
parallel on a concurrent object is equivalent to that 
of some legal linear sequence of those method calls. 

2. A linearizable concurrent object is one for which all 
possible executions are linearizable. 
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Table 1: Example execution of a monitor-
based implementation of FIFO queue q!

Is this a linearizable execution? 

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x” 
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Table 3: Example of a non-linearizable 
execution on a concurrent FIFO queue q!

Is this a linearizable execution? 

•  No! q.enq(x) must precede q.enq(y) in all linear sequences of 
method calls invoked on q.  It is illegal for the q.deq() 
operation to return y. 
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Places in HJ (Lecture 22)!
here = place at which current task is executing 
place.MAX_PLACES = total number of places (runtime constant)"

Specified by value of p in runtime option, -places p:w"

place.factory.place(i) =  place corresponding to index i"
<place-expr>.toString() returns a string of the form “place(id=0)”"
<place-expr>.id returns the id of the place as an int"

async at(P) S!
•  Creates new task to execute statement S at place P"
•  async S is equivalent to async at(here) S"

Note that here in a child task for an async/future computation 
will refer to the place P at which the child task is executing, 
not the place where the parent task is executing 
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Listing 1: Example HJ program with places!
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Distributions (Lecture 23)!
•  A distribution maps points in a rectangular index space (region) 

to places e.g., 
— i   place.factory.place(i % place.MAX_PLACES-1) 

•  Programmers are free to create any data structure they choose 
to store and compute these mappings 

•  For convenience, the HJ language provides a predefined type, 
hj.lang.dist, to simplify working with distributions 

•  Some public members available in an instance d of hj.lang.dist 
are as follows 
— d.rank = number of dimensions in the input region for distribution d 
— d.get(p) = place for point p mapped by distribution d. It is an error 

to call d.get(p) if p.rank != d.rank. 
— d.places() = set of places in the range of distribution d 
— d.restrictToRegion(pl) = region of points mapped to place pl by 

distribution d 
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Block Distribution!
•  dist.factory.block([lo:hi]) creates a block distribution over the 

one-dimensional region, lo:hi. 
•  A block distribution splits the region into contiguous subregions, 

one per place, while trying to keep the subregions as close to 
equal in size as possible.  

•  Block distributions can improve the performance of parallel loops 
that exhibit spatial locality across contiguous iterations. 

•  Example in Table 1: dist.factory.block([0:15]) for 4 places 
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Cyclic Distribution!
•  dist.factory.cyclic([lo:hi]) creates a cyclic distribution over the 

one-dimensional region, lo:hi.  
•  A cyclic distribution “cycles” through places 0 … place.MAX 

PLACES − 1 when spanning the input region 
•  Cyclic distributions can improve the performance of parallel 

loops that exhibit load imbalance 
•  Example in Table 3: dist.factory.cyclic([0:15]) for 4 places 

•  Example in Table 4: dist.factory.cyclic([0:7,0:1]) for 4 places 
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MapReduce: The Map Step (Lecture 24)!

v k 

k' v' 

k' v' 
map 

v k 

v k 

… 
k' v' 

map 

Input set of  
key-value pairs 

Flattened intermediate 
set of key-value pairs 

… 

k' v' map 

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt 
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MapReduce: The Reduce Step!
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HJ Data-Driven Futures (Lecture 25)!
ddfA = new DataDrivenFuture() 
•  Allocate an instance of a DDF object (container) 
async await(ddfA, ddfB, …) <Stmt> 
•  Create a new async task to start executing Stmt after all of ddfA, 

ddfB, … become available 
•  Task is said to be enabled when ddfA, ddfB, … become available 
ddfA.put(V)  
•  Store object V in ddfA, thereby making ddfA available 
•  Single-assignment rule: at most one put is permitted on a given DDF 
ddfA.get() 
•  Return value stored in ddfA 
•  Can only be performed by async’s that contain ddfA in their await 

clause (no blocking is necessary) 
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Figure 2: Example Habanero Java code 
fragment with Data-Driven Futures!

DataDrivenFuture left = new DataDrivenFuture(); 
DataDrivenFuture right = new DataDrivenFuture(); 
finish { 
    async left.put(leftBuilder()); // Task1 
    async right.put(rightBuilder()); // Task2 
    async await ( left ) leftReader(left); // Task3 
    async await ( right ) rightReader(right); // Task5 
    async await ( left, right )  

   bothReader( left, right); // Task4 
} 
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Listing 1: use of DDFs with empty objects!
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java.lang.Thread class (Lecture 27)!
•  Execution of a Java program begins with an instance of Thread 

created by the Java Virtual Machine (JVM) that executes the 
program’s main() method.  

•  Parallelism can be introduced by creating additional instances of 
class Thread that execute as parallel threads.  
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Objects and Locks in Java --- 
synchronized statements and methods (Lecture 28)!

•  Every Java object has an associated lock acquired via: 
—  synchronized statements 

–    synchronized( foo ){ 
   // execute code while holding foo’s lock 
} 

—  synchronized methods 
–    public synchronized void op1(){ 

   // execute op1 while holding ‘this’ lock 
} 

•  Language does not enforce any relationship between object used for 
locking and objects accessed in isolated code 
— If same object is used for locking and data access, then the object 

behaves like monitors 
•  Locking and unlocking are automatic 

— Locks are released when a synchronized block exits 
By normal means: end of block reached, return, break 
When an exception is thrown and not caught 
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Example: Obvious Deadlock!
•  This code can deadlock if leftHand() and rightHand() are called 

concurrently from different threads 
—  Because the locks are not acquired in the same order 

 public class ObviousDeadlock { 
    . . . 

    public void leftHand() { 

        synchronized(lock1) { 

            synchronized(lock2) { 

                for (int i=0; i<10000; i++)  

                    sum += random.nextInt(100); 

            } 

        } 

    } 

    public void rightHand() { 

        synchronized(lock2) { 

            synchronized(lock1) { 

                for (int i=0; i<10000; i++)  

                    sum += random.nextInt(100); 

            } 

        } 

    } 

 } 
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Dynamic Order Deadlocks!
•  There are even more subtle ways for threads to deadlock due to inconsistent 

lock ordering 
— Consider a method to transfer a balance from one account to another: 
public class SubtleDeadlock { 
       public void transferFunds(Account from,  
                                 Account to,  
                                 int amount) { 
           synchronized (from) { 
               synchronized (to) { 
                   from.subtractFromBalance(amount); 
                   to.addToBalance(amount); 
               } 
           } 
       } 
   } 

— What if one thread tries to transfer from A to B while another tries to 
transfer from B to A ? 

Inconsistent lock order again – Deadlock! 
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The Java wait() Method (Lecture 29)!
•  A thread can perform a wait() method on an object that it 

owns: 
1.  the thread releases the object lock 
2.  thread state is set to blocked 
3.  thread is placed in the wait set 

•  Causes thread to wait until another thread invokes the notify() 
method or the notifyAll() method for this object.  

•  Since interrupts and spurious wakeups are possible, this 
method should always be used in a loop e.g.,  

     synchronized (obj) { 
         while (<condition does not hold>) 
             obj.wait(); 
         ... // Perform action appropriate to condition 
     } 
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Entry and Wait Sets!
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The notify() Method!
When a thread calls notify(), the following occurs: 

1.  selects an arbitrary thread T  from the wait set 
2.  moves T  to the entry set 
3.  sets T  to Runnable 

T can now compete for the object’s lock again 
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Multiple Notifications!
•  notify() selects an arbitrary thread from the wait set.  

*This may not be the thread that you want to be selected. 
•  Java does not allow you to specify the thread to be selected 
•  notifyAll() removes ALL threads from the wait set and places 

them in the entry set. This allows the threads to decide among 
themselves who should proceed next. 

•  notifyAll() is a conservative strategy that works best when 
multiple threads may be in the wait set 
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java.util.concurrent.Executor interface  
(Lecture 31)!

•  Framework for asynchronous task execution 
•  A design pattern with a single-method interface 

— interface Executor { void execute(Runnable w); } 

•  Separate work from workers (what vs how) 
— ex.execute(work), not new Thread(..).start() 

•  Cancellation and shutdown support 
•  Usually created via Executors factory class 

— Configures flexible ThreadPoolExecutor 
— Customize shutdown methods, before/after hooks, saturation policies, 

queuing 
•  Normally use group of threads: ExecutorService 
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Executor Framework Features!
•  There are a number of factory methods in Executors 

—  newFixedThreadPool(n), newCachedThreadPool(), 
newSingleThreadedExecutor() 

•  Can also instantiate ThreadPoolExecutor directly 
•  Can customize the thread creation and teardown behavior 

— Core pool size, maximum pool size,  timeouts, thread factory 

•  Can customize the work queue 
— Bounded vs unbounded 
— FIFO vs priority-ordered 

•  Can customize the saturation policy (queue full, maximum 
threads) 
— discard-oldest, discard-new, abort, caller-runs 

•  Execution hooks for subclasses 
—  beforeExecute(), afterExecute() 



Page 17 

COMP 322, Spring 2011 (V.Sarkar)	

33 

ExecutorService interface!

•  ExecutorService  extends Executor interface with lifecycle 
management methods e.g., 
—  shutdown()  

Graceful shutdown – stop accepting tasks, finish 
executing already queued tasks, then terminate 

— shutdownNow()  
Abrupt shutdown – stop accepting tasks, attempt to 

cancel running tasks, don't start any new tasks, 
return unstarted tasks 

•  An ExeuctorService is a group of thread objects, each running 
some variant of the following loop 
—   while (…) { get work and run it; } 

•  ExecutorService’s take responsibility for the threads they 
create 
— Service owner starts and shuts down ExecutorService 
— ExecutorService starts and shuts down threads 
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Volatile Variables (Lecture 32)!
•  Java provides a “light” form of synchronization/fence operations in 

the form of volatile variables 
•  Volatile variables guarantee visibility 

— An access of a volatile variable is like an access of a synchronization 
variable in the Weak Ordering model 

— Adds serialization edges to computation graph due to isolated read/
write operations 

•  Incrementing a volatile variable (++v) is not thread-safe 
— Increment operation looks atomic, but isn’t (read and write are two 

separate operations) 

•  Volatile variables are best suited for flags that have no 
dependencies 

– volatile boolean asleep 
– while (! asleep) 
    ++sheep; 

• Warning: a volatile declaration on an array variable may not give 
you the semantics you expect 
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CPUs and GPUs have fundamentally 
different design philosophies (Lecture 33)!

DRAM 

Co 
Ca  A A  A  A  A A  A A  A A A  A  A  A A  A 

Streaming Multiprocessor 

Cache 

ALU 
Control 

ALU 

ALU 

ALU 

DRAM 

Single CPU core Multiple GPU processors 
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Process Flow of a CUDA Kernel Call 
(Figure 2)!

•  Data parallel programming architecture from 
NVIDIA 
— Execute programmer-defined kernels on 

extremely parallel GPUs 
— CUDA program flow:  

1.  Push data on device 
2.  Launch kernel 
3.  Execute kernel and memory accesses in 

parallel 
4.  Pull data off device 

•  Device threads are launched in batches 
— Blocks of Threads, Grid of Blocks 

•  Explicit device memory management  
— cudaMalloc, cudaMemcpy, cudaFree, etc. 

37 

Figure source: Y. Yan et. al “JCUDA: a 
Programmer Friendly Interface for 
Accelerating Java Programs with CUDA.” 
Euro-Par 2009. 
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Execution of a CUDA program (Figure 3)!
•  Integrated host+device application 

—  Serial or modestly parallel parts on CPU host 
—  Highly parallel kernels on GPU device 

Host Code  
(small number of threads)‏ 

. . . 

. . . 

Device Kernel 
(large number of threads) 

Host Code  
(small number of threads)‏ 

Device Kernel 
(large number of threads) 

Host Code  
(small number of threads)‏ 
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Logical Structure of a CUDA kernel 
invocation (Listing 1)!
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Organization of a CUDA grid 
(Figure 4)!

async at(GPU) 

async at(GPU) 

forall(blockIdx) 

forall(threadIdx) 
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Impact of Single Control Unit for a Block of 
Threads executing on an SM (Lecture 34) 

Control flow example 
if (threadIdx >= 2) { 
    out[threadIdx] += 100; 
} 
else { 
    out[threadIdx] += 10; 
} 

P0 
Control 
Unit P! 

PM-
1 

Re
g ... 

Memory 

Re
g 

Re
g compare  

threadIdx,2  

SIMD = Single Instruction Multiple Data 
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SIMD Execution of Control Flow 
Control flow example 
if (threadIdx.x >= 2) { 
    out[threadIdx.x] += 100; 
} 
else { 
    out[threadIdx.x] += 10; 
} 

P0 

Instructio
n 

Unit 
P! 

PM-
1 

Re
g ... 

Memory 

Re
g 

Re
g 

/* Condition code cc = 
true branch set by  
predicate execution */ 
(CC) LD R5,  
          &(out
+threadIdx.x) 
(CC) ADD R5, R5, 100 
(CC) ST R5,  
         &(out
+threadIdx.x) 

X X ✔ ✔ 
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SIMD Execution of Control Flow 
Control flow example 
if (threadIdx >= 2) { 
    out[threadIdx] += 100; 
} 
else { 
    out[threadIdx] += 10; 
} 

P0 

Instructio
n 

Unit 
P! 

PM-
1 

Re
g ... 

Memory 

Re
g 

Re
g 

/* possibly predicated 
using CC */ 
(not CC) LD R5,  
             &(out
+threadIdx) 
(not CC) ADD R5, R5, 
10 
(not CC) ST R5,  
             &(out
+threadIdx) 

✔ ✔ X X
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Divergence 
•  Divergent paths 

— What happens if different threads within a block take different 
control flow paths? 

— N divergent paths 
–  An N-way divergent block is serially issued over the N 

different paths 
–  Performance decreases by about a factor of N 
–  GPU is better suited for blocks of threads with low intra-block 

divergence 
–  Multicore CPU is better equipped to handle divergence than CPU 

•  Implementation note 
— Current GPUs subdivide a block of threads into “warps” of a fixed 

size (e.g., 32 or 64) 
— Divergence can be tolerated among threads in different warps, but 

not among threads in the same warp 
— If you avoid divergence within a block, you will also guarantee the 

absence of divergence within a warp 
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Desirable Properties of Parallel Program 
Executions (Lecture 35)!

•  Data-race freedom (Lecture 6) 
•  Termination 

•  But some applications are designed to be non-
terminating 

•  Liveness = a program’s ability to make progress in a 
timely manner 

•  Different levels of liveness guarantees (from weaker 
to stronger) 
— Deadlock freedom 
— Livelock freedom 
— Starvation freedom 
— Bounded wait 
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Scope of Course (Lecture 1)!
•  Fundamentals of parallel programming 

—  Task creation and termination, computation graphs, scheduling theory, 
futures, forall parallel loops, barrier synchronization (phasers), isolation & 
mutual exclusion, task affinity, bounded buffers, data flow, threads, data 
races, deadlock, memory models 

•  Introduction to parallel algorithms 
•  Habanero-Java (HJ) language, developed in the Habanero Multicore 

Software Research project at Rice 
•  Abstract executable performance model for HJ programs 
•  Java Concurrency 
•  Written assignments 
•  Programming assignments 

—  Abstract metrics 
—  Real parallel systems (8-core Intel, Rice SUG@R system) 

•  Beyond HJ and Java: introduction to CUDA and MPI 


