COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 38: Course Review
(Second half of semester)

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

COMP 322 Lecture 38 22 April 2011 @

Announcements

* Homework 7 due by 5pm today
—Send email to comp322-staff if you're running into issues with
accessing SUG@R nodes, or are delayed for any other reason
* Take-home final exam will be given at the end of today's
lecture
— Content will focus on second half of semester

- Knowledge of supporting content from first half of semester will
be assumed e.g., async, finish, isolated, forall, critical-path-
length and work metrics

- This week's lectures on MPI will not be included in the exam
—Due by 5pm on Friday, April 29t

COMP 322, Spring 2011 (V.Sarkar) @

Page 1

Table 1: Methods in java.util.concurrent atomic classes
Atomicinteger and AtomiclntegerArray (Lecture 19)

j.u.c.atomic Class
and Constructors j.u.c.atomic Methods Equivalent HJ isolated statements
AtomicInteger int j = v.get(); int j; isolated j = v.val;

v.set(newVal); isolated v.val = newVal;
AtomicInteger() int j = v.getAndSet(newVal); | int j; isolated { j = v.val; v.val = newVal; }

// init = 0 int j = v.addAndGet(delta); isolated { v.val += delta; j = v.val; }

int j = v.getAndAdd(delta); isolated { j = v.val; v.val += delta; }

AtomicInteger(init) boolean b = boolean b;
v.compareAndSet isolated
(expect,update); if (v.val==expect) {v.val=update; b=true;}
else b = false;

AtomicIntegerArray | int j = v.get(i); int j; isolated j = v.arr[i];

v.set(i,newVal); isolated v.arr[i] = newVal;
AtomicIntegerArray | int j = v.getAndSet(i,newVal); | int j; isolated { j = v.arr[i]; v.arr[i] = newVal; }
(length) // init = 0 int j = v.addAndGet(i,delta); | isolated { v.arr[i] += delta; j = v.arr[i]; }

int j = v.getAndAdd(i,delta); | isolated { j = v.arr[i]; v.arr[i] += delta; }
AtomicIntegerArray || boolean b = boolean b;
(arr) v.compareAndSet isolated

(i,expect,update); if (v.arr[ij==expect) {v.arr[i]=update; b=true;}
else b = false;
3 COMP 322, Spring 2011 (V.Sarkar) @

Parallel Depth-First Search Spanning Tree
Example w/ isolated construct

l. class V {

2 V [] neighbors; // adjacency list for input graph
3 V parent; // output value of parent in spanning tree
4. boolean tryLabeling(V n) {

5 isolated if (parent == null) parent=n;

6. return parent == n;

7 } // tryLabeling

8 void compute() {

9. for (int i=0; i<neighbors.length; i++) {

10. V child = neighbors[i];

11. if (child.tryLabeling(this))

12. async child.compute(); //escaping async
13. }

14. } // compute

15.} // class V

16.. . .

17 .root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19..

4 COMP 322, Spring 2011 (V.Sarkar) @

Page 2

Parallel Depth-First Search Spanning Tree
Example w/ AtomicReference

l. class V {

2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree
4. boolean tryLabeling(V n) {

5. return parent.compareAndSet(null ,n):

6.

7. } // tryLabeling

8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {

10. V child = neighbors[i];

11. if (child.tryLabeling(this))

12. async child.compute(); //escaping async
13. }

14. } // compute
15.} // class V

17 .root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

5 COMP 322, Spring 2011 (V.Sarkar) @

java.util.concurrent.concurrentHashMap
(Lecture 20)

* Implements ConcurrentMap sub-interface of Map

* Allows read (traversal) and write (update) operations to overlap
with each other

* Some operations are atomic with respect to each other e.g.,
—get(), put(), putIfAbsent(), remove()

* Aggregate operations may not be viewed atomically by other
operations e.g.,
—putAll(), clear()

* Expected degree of parallelism can be specified in
ConcurrentHashMap constructor
— ConcurrentHashMap(initialCapacity, loadFactor, concurrencylevel)

— A larger value of concurrencylevel results in less serialization, but
a larger space overhead for storing the ConcurrentHashMap

6 COMP 322, Spring 2011 (V.Sarkar) @

Page 3

Example usage of ConcurrentHashMap in
org.mirrorfinder.model.BaseDirectory

1| public abstract class BaseDirectory extends Baseltem implements Directory {
2 Map files = new ConcurrentHashMap ();

3 5 o o

4 public Map getFiles () {

5 return files;

6

7 public boolean has(File item) {

8 return getFiles ().containsValue(item);

ol 3

10 public Directory add(File file) {

11 String key = file .getName();

12 if (key = null) throw new Error(. . .);

13 getFiles ().put(key, file);

14 5 o o

15 return this;

16

17 public Directory remove(File item) throws NotFoundException {
18 if (has(item)) {

19 getFiles ().remove(item.getName ());

20 o o o

21 } else throw new NotFoundException(”can’t.remove_.unrelated._item”);
2| 1}

23| }

Listing 1: Example usage of ConcurrentHashMap in org.mirrorfinder.model.BaseDirectory [1]

7 COMP 322, Spring 2011 (V.Sarkar) §

java.util.concurrent.ConcurrentLinkedQueue
(Lecture 20)

* Queue interface added to java.util
- interface Queue extends Collection and includes
boolean offer(E x); // same as add() in Collection
E poll(): // remove head of queue if non-empty
E remove(o) throws NoSuchElementException;
E peek(): // examine head of queue without removing it
* Non-blocking operations
—Return false when full

—Return null when empty

* Fast thread-safe non-blocking implementation of Queue
interface: ConcurrentLinkedQueue

8 COMP 322, Spring 2011 (V.Sarkar) §

Page 4

Example usage of ConcurrentLinkedQueue in
org.apache.catalina.tribes.io.BufferPool15Impl

1| class BufferPooll5Impl implements BufferPool.BufferPoolAPI {

2 protected int maxSize;

3 protected AtomicInteger size = new AtomicInteger (0);

4 protected ConcurrentLinkedQueue queue = new ConcurrentLinkedQueue ();
5 5 o o

6 public XByteBuffer getBuffer (int minSize, boolean discard) {

7 XByteBuffer buffer = (XByteBuffer) queue.poll();

8 if (buffer != null) size.addAndGet(—buffer.getCapacity ());

9 if (buffer = null) buffer = new XByteBuffer(minSize,discard);
10 else if (buffer.getCapacity () <= minSize) buffer.expand(minSize);
11 I

12 return buffer;

13

14 public void returnBuffer (XByteBuffer buffer) {

15 if ((size.get() + buffer.getCapacity()) <= maxSize) {

16 size .addAndGet(buffer . getCapacity ());

17 queue. offer (buffer);

18 }

19 3}

2] }

Listing 2: Example usage of ConcurrentLinkedQueue in org.apache.catalina.tribes.io.BufferPool15Impl

9 COMP 322, Spring 2011 (V.Sarkar) @

Informal definition of Linearizability
(Lecture 21)

1.A linearizable execution is one in which the
semantics of a set of method calls performed in
parallel on a concurrent object is equivalent to that
of some legal linear sequence of those method calls.

2. A linearizable concurrent object is one for which all
possible executions are linearizable.

10 COMP 322, Spring 2011 (V.Sarkar) @

Page 5

Table 1: Example execution of a monitor-
based implementation of FIFO queue q

Is this a linearizable execution?

Time || Task A Task B
Invoke q.enq(x)
Work on q.enq(x)
Work on q.enq(x)
Return from q.enq(x)

Invoke q.enq(y)

Work on q.enq(y)
Work on q.enq(y)
Return from q.enq(y)
Invoke q.deq()

Return x from q.deq()

© 00 O Tt WN - O

Yes! Equivalent to "q.enq(x) . q.enq(y) : q.deq():x"

11 COMP 322, Spring 2011 (V.Sarkar)

Table 3: Example of a non-linearizable
execution on a concurrent FIFO queue q

Is this a linearizable execution?

Time | Task A Task B
0 Invoke q.enq(x)
1 Return from q.enq(x)
2 Invoke q.enq(y)
3 Invoke q.deq() Work on q.enq(y)
4 Work on q.deq() Return from q.enq(y)
5 Return y from q.deq()

* No! q.enq(x) must precede q.enq(y) in all linear sequences of
method calls invoked on q. It is illegal for the q.deq()
operation to return y.

12 COMP 322, Spring 2011 (V.Sarkar)

Page 6

Places in HJ (Lecture 22)

here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) = place corresponding to index i
<place-expr>.toString() returns a string of the form “place(id=0)"
<place-expr>.id returns the id of the place as an int

async at(P) S
* Creates new task to execute statement S at place P
° async S is equivalent to async at(here) S

Note that here in a child task for an async/future computation
will refer to the place P at which the child task is executing,
not the place where the parent task is executing

13 COMP 322, Spring 2011 (V.Sarkar) @

Listing 1: Example HJ program with places

1| class T1 {
2 final place affinity;
3 A
4 // T1’s constructor sets affinity to place where instance was created
5 T1() { affinity = here; ... }
6 Lo
7| 3
8l . . .
9| finish { // Inter—place parallelism
10 System.out.println (” Parent_place.=.”, here); // Parent task s place
11 for (TLa=. . .) {
12 async at (a.affinity) { // Execute async at place with affinity to a
13 a.foo ();
14 System.out.println (” Child _place_.=_", here); // Child task’s place
15 } // async
16 } // for
17| } // finish
18] . . .
14 COMP 322, Spring 2011 (V.Sarkar) @

Page 7

Distributions (Lecture 23)

A distribution maps points in a rectangular index space (region)
to places e.g.,

—i > place.factory.place(i % place. MAX_PLACES-1)

Programmers are free to create any data structure they choose
to store and compute these mappings

For convenience, the HJ language provides a predefined type,
hj.lang.dist, to simplify working with distributions

Some public members available in an instance d of hj.lang.dist
are as follows
—d.rank = number of dimensions in the input region for distribution d

—d.get(p) = place for point p mapped by distribution d. It is an error
to call d.get(p) if p.rank != d.rank.

—d.places() = set of places in the range of distribution d

—d.restrictToRegion(pl) = region of points mapped to place pl by
distribution d

15 COMP 322, Spring 2011 (V.Sarkar) @
Block Distribution

* dist.factory.block([lo:hi]) creates a block distribution over the
one-dimensional region, lo:hi.

* A block distribution splits the region into contiguous subregions,
one per place, while trying to keep the subregions as close to
equal in size as possible.

* Block distributions can improve the performance of parallel loops
that exhibit spatial locality across contiguous iterations.

* Example in Table 1: dist.factory.block([0:15]) for 4 places
Index [O[1]2|3[4|5[6[7[8[9[10][11]12]13]14]15
Place id 0 1 2 3

16 COMP 322, Spring 2011 (V.Sarkar) @

Page 8

Cyclic Distribution

* dist.factory.cyclic([lo:hi]) creates a cyclic distribution over the
one-dimensional region, lo:hi.

* A cyclic distribution “cycles” through places O ... place. MAX
PLACES - 1 when spanning the input region

* Cyclic distributions can improve the performance of parallel
loops that exhibit load imbalance

* Example in Table 3: dist.factory.cyclic([0:15]) for 4 places

Index 0O(1(12(3(4|5|6|7|8[9|10 |11 |12 |13 | 14|15

Placeid |0 |12 |3|0|1|2|3|0|1|2 |3 |0 |1]|2]3

* Example in Table 4: dist.factory.cyclic([0:7,0:1]) for 4 places

[Index [(0,01 [[0,1] [[1,0] | [L1] | [2,0] [(2.1] [(3,01 | (3,11 | [4,0] | [41] [[5,0] [(5,1] [(6,01 [[6,1] | [7.0] | [7,1] |
[Placeid | 0 [1 [2 [3 [o [1 [23 [o |1 [23 [o0o]|1][z2T]3]

17 COMP 322, Spring 2011 (V.Sarkar) §

MapReduce: The Map Step (Lecture 24)

Input set of Flattened intermediate
key-value pairs set of key-value pairs

7 4
Al = 'y 4
L ERT

AW = O8N

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce. ppt

18 COMP 322, Spring 2011 (V.Sarkar) §

Page 9

MapReduce: The Reduce Step

Intermediate Output .
key-value pairs Key-value groups key-value pairs

iy ARy = S
M o e
o

o <N ©@

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce. ppt

19 COMP 322, Spring 2011 (V.Sarkar) §

HJ Data-Driven Futures (Lecture 25)

ddfA = new DataDrivenFuture()
* Allocate an instance of a DDF object (container)
async await(ddfA, ddfB, ..) <Stmt>

* Create a new async task to start executing Stmt after all of ddfA,
ddfB, .. become available

* Task is said to be enabled when ddfA, ddfB, .. become available
ddfA.put(V)
* Store object V in ddfA, thereby making ddfA available

* Single-assignment rule: at most one put is permitted on a given DDF
ddfA.get()

* Return value stored in ddfA

* Can only be performed by async's that contain ddfA in their await
clause Zno blocking is necessary)

20 COMP 322, Spring 2011 (V.Sarkar) §

Page 10

Figure 2: Example Habanero Java code
fragment with Data-Driven Futures

DataDrivenFuture left = new DataDrivenFuture();
DataDrivenFuture right = new DataDrivenFuture();
finish {

async left.put(leftBuilder()); // Taskl

async right.put(rightBuilder()): // Task2

async await (left) leftReader(left); // Task3

async await (right) rightReader(right); // Task5

async await (left, right) Taski Task,

bothReader(left, right); // Task4

I\ /)

Tasks Tasks Tasks

21 COMP 32:

Listing 1: use of DDFs with empty objects

1| finish {

2 DataDrivenFuture ddfA = new DataDrivenFuture();

3 DataDrivenFuture ddfB = new DataDrivenFuture();

4 DataDrivenFuture ddfC = new DataDrivenFuture();

5 DataDrivenFuture ddfD = new DataDrivenFuture();

6 DataDrivenFuture ddfE = new DataDrivenFuture();

7 async { . . . ; ddfA.put(””); } // Task A

8 async await(ddfA) { . . . ; ddfB.put(””); } // Task B
9 async await(ddfA) { . . . ; ddfC.put(””); } // Task C
10 async await(ddfB,ddfC) { . . . ; ddfD.put(””); } // Task D
11 async await(ddfC) { . . . ; ddfE.put(””); } // Task E
12 async await(ddfD,ddfE) { . . . } // Task F

13| } // finish

22 COMP 322, Spring 2011 (V.Sarkar)

Page 11

java.lang.Thread class (Lecture 27)

* Execution of a Java program begins with an instance of Thread
created by the Java Virtual Machine (JVM) that executes the
program's main() method.

* Parallelism can be introduced by creating additional instances of
class Thread that execute as parallel threads.

[

1 public class Thread extends Object implements Runnable {

2 Thread() { ... } // Creates a new Thread

3 Thread (Runnable r) { ... } // Creates a new Thread with Runnable object r
4 void run() { ... } // Code to be executed by thread

5 // Case 1: If this thread was created using a Runnable object,

6 // then that object’s run method is called

7 // Case 2: If this class is subclassed, then the run() method

8 // in the subclass is called

9 void start() { ... } // Causes this thread to start execution
10 void join() { ... } // Wait for this thread to die
11 void join(long m) // Wait at most m milliseconds for thread to die
12 static Thread currentThread() // Returns currently executing thread
13
14 }

L

Listing 3: java.lang.Thread class

23 COMP 322, Spring 2011 (V.Sarkar) @

Objects and Locks in Java ---
synchronized statements and methods (Lecture 28)

* Every Java object has an associated lock acquired via:
— synchronized statements

- synchronized(foo X
/ execute code while holding foo's lock

— synchronized methods

- public synchronized void op1(}{
// execute opl while holding ‘this’ lock

* Language does not enforce any relationship between object used for
locking and objects accessed in isolated code

— If same object is used for locking and data access, then the object
behaves like monitors
* Locking and unlocking are automatic
—Locks are released when a synchronized block exits
By normal means: end of block reached, return, break
When an exception is thrown and not caught

24 COMP 322, Spring 2011 (V.Sarkar) @

Page 12

Example: Obvious Deadlock

* This code can deadlock if leftHand () and rightHand () are called
concurrently from different threads

— Because the locks are not acquired in the same order

public class ObviousDeadlock {

public void leftHand() {
synchronized(lockl) {
synchronized (lock2) {
for (int i=0; i<10000; i++)

sum += random.nextInt(100) ;

}
public void rightHand() {
synchronized(lock2) {
synchronized(lockl) ({
for (int i=0; i<10000; i++)

sum += random.nextInt (100) ;

25! COMP 322, Spring 2011 (V.Sarkar)

Dynamic Order Deadlocks

* There are even more subtle ways for threads to deadlock due to inconsistent
lock ordering

— Consider a method to transfer a balance from one account to another:
public class SubtleDeadlock {
public void transferFunds (Account from,
Account to,
int amount) {
synchronized (from) {
synchronized (to) {
from.subtractFromBalance (amount) ;
to.addToBalance (amount) ;

}

— What if one thread tries to transfer from A to B while another tries to
transfer from B to A ?

Inconsistent lock order again - Deadlock!

26 COMP 322, Spring 2011 (V.Sarkar)

Page 13

The Java wait() Method (Lecture 29)

* A thread can perform a wait() method on an object that it
owns:
1. the thread releases the object lock
2. thread state is set to blocked
3. thread is placed in the wait set

* Causes thread to wait until another thread invokes the notify()
method or the notifyAll() method for this object.

* Since interrupts and spurious wakeups are possible, this
method should always be used in a loop e.g.,

synchronized (obj) {
while (<condition does not hold>)
obj.wait():
... // Perform action appropriate to condition

}
27 COMP 322, Spring 2011 (V.Sarkar) @
Entry and Wait Sets
acquire lock wait
| |
entry set wait set
28 COMP 322, Spring 2011 (V.Sarkar) @

Page 14

The notify() Method

When a thread calls notify(), the following occurs:
1. selects an arbitrary thread T from the wait set
2. moves T to the entry set
3. sets T to Runnable

T can now compete for the object’s lock again

29 COMP 322, Spring 2011 (V.Sarkar) @

Multiple Notifications

* notify() selects an arbitrary thread from the wait set.
*This may not be the thread that you want to be selected.

* Java does not allow you to specify the thread to be selected

* notifyAll() removes ALL threads from the wait set and places
them in the entry set. This allows the threads to decide among
themselves who should proceed next.

* notifyAll() is a conservative strategy that works best when
multiple threads may be in the wait set

30 COMP 322, Spring 2011 (V.Sarkar) @

Page 15

java.util.concurrent.Executor interface
(Lecture 31)

Framework for asynchronous task execution

A design pattern with a single-method interface
—interface Executor { void execute(Runnable w); }

Separate work from workers (what vs how)
—ex.execute(work), not new Thread(..).start()

Cancellation and shutdown support

Usually created via Executors factory class
—Configures flexible ThreadPoolExecutor

—Customize shutdown methods, before/after hooks, saturation policies,
queuing

Normally use group of threads: ExecutorService

31

COMP 322, Spring 2011 (V.Sarkar) @

Executor Framework Features

* There are a number of factory methods in Executors

— newFixedThreadPool (n), newCachedThreadPool (),
newSingleThreadedExecutor ()

* Can also instantiate ThreadPoolExecutor directly
* Can customize the thread creation and teardown behavior

—Core pool size, maximum pool size, timeouts, thread factory

* Can customize the work queue

—Bounded vs unbounded
—FIFO vs priority-ordered

* Can customize the saturation policy (queue full, maximum

threads)
—discard-oldest, discard-new, abort, caller-runs

* Execution hooks for subclasses

— beforeExecute (), afterExecute ()

32

COMP 322, Spring 2011 (V.Sarkar) @

Page 16

ExecutorService interface

33

ExecutorService extends Executor interface with lifecycle
management methods e.g.,

— shutdown ()

Graceful shutdown - stop accepting tasks, finish
executing already queued tasks, then terminate

— shutdownNow ()

Abrupt shutdown - stop accepting tasks, attempt to
cancel running tasks, don't start any new tasks,
return unstarted tasks

An ExeuctorService is a group of thread objects, each running
some variant of the following loop

— while (..) { get work and run it; }

ExecutorService's take responsibility for the threads they
create

—Service owner starts and shuts down ExecutorService
— ExecutorService starts and shuts down threads
COMP 322, Spring 2011 (V.Sarkar)

Volatile Variables (Lecture 32)

Java provides a "light” form of synchronization/fence operations in
the form of volatile variables
Volatile variables guarantee visibility

—An access of a volatile variable is like an access of a synchronization
variable in the Weak Ordering model

— Adds serialization edges to computation graph due to isolated read/
write operations
Incrementing a volatile variable (++v) is not thread-safe

—Increment operation looks atomic, but isn't (read and write are two
separate operations)

Volatile variables are best suited for flags that have no
dependencies
-volatile boolean asleep
-while (! asleep)
++sheep;
*Warning: a volatile declaration on an array variable may not give
you the semantics you expect

34

COMP 322, Spring 2011 (V.Sarkar) @

Page 17

COMP 322: Fundamentals of

Parallel Programming
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 33: GPGPU Programming with
CUDA

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

35 COMP 32263iB"52, spring 2011 WV Sarkar)

CPUs and GPUs have fundamentally
different design philosophies (Lecture 33)

Single CPU core Multiple GPU processors
[E/AAAAAAAAAAAAAAA A
-
W[TTTTITTTT] 1]
W[TTTTITTTT] [1]
W[TTTTITTTT] [1]
W[[TTTTTTTT] [1]
W TTTTTTTTT] [1]

36 COMP 322, Spring 2011 (V.Sarkar) §

Page 18

Process Flow of a CUDA Kernel Call
(Figure 2)
* Data parallel programming architecture from

NVIDIA

—Execute programmer-defined kernels on
extremely parallel GPUs

—CUDA program flow: Vain o
1. Push data on device Memory
2. Launch kernel 1[4] ,
3. Execute kernel and memory accesses in GPU 3
parallel Memory % %:IE
4. Pull data off device i 3 |HEIHE
. . o
* Device threads are launched in batches Il
—Blocks of Threads, 6rid of Blocks []
GPU ' OOOQ
* Explicit device memory management

—cudaMalloc, cudaMemcpy, cudaFree, etc.
Figure source: Y. Yan et. al "JCUDA: a
Programmer Friendly Interface for
Accelerating Java Programs with CUDA."
Euro-Par 2009.

o7
37 COMP 322, Spring 2011 (V.Sarkar) @

Execution of a CUDA program (Figure 3)

* Integrated host+device application
— Serial or modestly parallel parts on CPU host
— Highly parallel kernels on GPU device

Host Code
(small number of threads)

Device Kernel

(large number of threads)

Host Code
(small number of threads)

Device Kernel
(large number of threads)

Host Code
(small number of threads)

v

vy
38 COMP 322, Spring 2011 (V.Sarkar)

Page 19

Logical Structure of a CUDA kernel
invocation (Listing 1)

1/ finish async at(GPU) {
2 // Parallel execution of blocks in grid
3 forall (point[blockIdx.x,blockldx.y] [0:gridDim.x—1,0:gridDim.y—1]) {
4 // Parallel execution of threads in block (blockldx.x,blockldx.y)
5 forall (point[threadldx.x,threadldx.y,threadldx.z]
6 [0:blockDim.x—1,0:blockDim.y—1,0:blockDim.z—1]) {
7 // Perform kernel computation as function of blockIdx.x,blockldx.y
8 // and threadldx.x,threadldx.y,threadldx.z
9 s e s
10 next; // barrier synchronizes inner forall only (-_syncthreads)
11
12 } // forall threadldx.x,threadldx.y,threadldx.z
13 } // forall blockldx.x, blockldx.y

14| } // finish async (GPU)
L

Listing 1: Logical structure of a CUDA kernel invocation

39

COMP 322, Spring 2011 (V.Sarkar) §

40

Organization of a CUDA grid
(Figure 4)

Host Device
async at(GPU) arid 1 forall(blockIdx)
Kernel Block Block
1 (0, 0) (1, 0)
Block, © I Block
.1 an
I, T
- p I
async at(6PVU) . “Gria 2 / g9
L [
Kernel 2 >
2 .
Block (1, 1)

COMP 322, Spring 2011 (V.Sarkar) §

Page 20

Imﬁact of Single Control Unit for a Block of
Threads executing on an SM (Lecture 34)

Control flow example
if (threadIdx >= 2) {

out[threadIdx] += 100;
}

else {
out[threadIdx] += 10;

}
compare
Control threadIdx,?2
Unit
SIMD = Single Instruction Multiple Data
41 COMP 322, Spring 2011 (V.Sarkar) §

SIMD Execution of Control Flow

Control flow example
if (threadIdx.x >= 2) {
out[threadIdx.x] += 100;
}
else { /* Condition code cc =
out[threadIdx.x] += 10; true branch set by
} predicate execution */
(CC) LD R5,
Instructio &(out
n +threadIdx.x)
U (CC) ADD R5, R5, 100
(CC) ST R5,
&(out
+threadIdx.x)

42 COMP 322, Spring 2011 (V.Sarkar) §

Page 21

SIMD Execution of Control Flow

“Control flow example
if (threadIdx >= 2) {

out[threadIdx] += 100;
}

else {
out[threadIdx] += 10; /* possibly predicated
} using CC */
(not CC) LD R5,
Instructio &(out
n +threadIdx)
Unit (not CC) ADD R5, R5,
10
(not CC) ST R5,
&(out
+threadIdx)

43 COMP 322, Spring 2011 (V.Sarkar) §

Divergence

* Divergent paths

—What harpens if different threads within a block take different
control flow paths?

—N divergent paths

- An N-way divergent block is serially issued over the N
different paths

- Performance decreases by about a factor of N

- 6PV is better suited for blocks of threads with low intra-block
divergence

- Multicore CPU is better equipped to handle divergence than CPU

* Implementation note

—Current GPUs subdivide a block of threads into "warps” of a fixed
size (e.g., 32 or 64)

—Divergence can be tolerated among threads in different warps, but
not among threads in the same warp

—If you avoid divergence within a block, you will also guarantee the
absence of divergence within a warp

44 COMP 322, Spring 2011 (V.Sarkar) §

Page 22

Desirable Properties of Parallel Program
Executions (Lecture 35)

Data-race freedom (Lecture 6)
Termination

* But some applications are designed to be non-
terminating

Liveness = a program's ability to make progress in a
timely manner

Different levels of liveness guarantees (from weaker
to stronger)

—Deadlock freedom
—Livelock freedom
—Starvation freedom
—Bounded wait

45

COMP 322, Spring 2011 (V.Sarkar) @

Scope of Course (Lecture 1)

Fundamentals of parallel programming

— Task creation and termination, computation graphs, scheduling theory,
futures, forall parallel loops, barrier synchronization (phasers), isolation &
mutual exclusion, task affinity, bounded buffers, data flow, threads, data
races, deadlock, memory models

Introduction to parallel algorithms

Habanero-Java (HJ) language, developed in the Habanero Multicore
Software Research project at Rice

Abstract executable performance model for HJ programs
Java Concurrency
Written assignments

Programming assignments
— Abstract metrics
— Real parallel systems (8-core Intel, Rice SUG@R system)

Beyond HJ and Java: introduction to CUDA and MPI

46

COMP 322, Spring 2011 (V.Sarkar) @

Page 23

