
COMP 322: Fundamentals of
Parallel Programming

Lecture 3: Computation Graphs, Abstract
Performance Metrics, Array Reductions

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 3 13 January 2012

COMP 322, Spring 2012 (V.Sarkar)2

Acknowledgments for Today’s Lecture
• Cilk lectures, http://supertech.csail.mit.edu/cilk/

COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture
• Lower and upper bounds for abstract parallel execution time

• Parallel Array sum and Complexity Analysis

• Abstract execution metrics in HJ

3

COMP 322, Spring 2012 (V.Sarkar)4

Computation Graphs for HJ Programs
(Recap)

• A Computation Graph (CG) captures the dynamic execution of an
HJ program, for a specific input

• CG nodes are “steps” in the program’s execution
— A step is a sequential subcomputation without any async, begin-finish

and end-finish operations

• CG edges represent ordering constraints
— “Continue” edges define sequencing of steps within a task
— “Spawn” edges connect parent tasks to child async tasks
— “Join” edges connect the end of each async task to its IEF’s end-

finish operations

• All computation graphs must be acyclic
—It is not possible for a node to depend on itself

• Computation graphs are examples of “directed acyclic
graphs” (dags)

COMP 322, Spring 2012 (V.Sarkar)5

Lower Bounds on Execution Time

• Let TP = execution time of computation graph on P processors

—Assume an idealized machine where node N takes TIME(N)
regardless of which processor it executes on, and that
there is no overhead for creating parallel tasks

• Observations
—T1 = WORK(G)

—T∞ = CPL(G)

• Lower bounds
—Capacity bound: TP ≥ WORK(G)/P

—Critical path bound: TP ≥ CPL(G)

• Putting them together
—TP ≥ max(WORK(G)/P, CPL(G))

COMP 322, Fall 2009 (V.Sarkar)6

Upper Bound for Greedy Scheduling

• A greedy scheduler is one
that never forces a processor
to be idle when one or more
nodes are ready for execution

• A node is ready for execution
if all its predecessors have
been executed

Theorem [Graham ’66]. Any
“greedy scheduler” achieves

TP ≤ WORK(G)/P + CPL(G)

COMP 322, Spring 2012 (V.Sarkar)7

Upper Bound on Execution Time:
Greedy-Scheduling Theorem

Proof sketch:
• Define a time step to be complete if

≥ P nodes are ready at that time, or
incomplete otherwise

complete time steps ≤ WORK(G)/P,
since each complete step performs P
work.

incomplete time steps ≤ CPL(G), since
each incomplete step reduces the
span of the unexecuted dag by 1.

P = 3

Theorem [Graham ’66]. Any
greedy scheduler achieves

TP ≤ WORK(G)/P + CPL(G)

COMP 322, Fall 2009 (V.Sarkar)8

Optimality of Greedy Schedulers

Combine lower and upper bounds to get

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution
time TP that is within a factor of 2 of the optimal time
(since max(a,b) and (a+b) are within a factor of 2 of
each other, for any a ≥ 0,b ≥ 0).

Corollary 2: Lower and upper bounds approach the
same value whenever

• There’s lots of parallelism, WORK(G)/CPL(G) >> P

• Or there’s little parallelism, WORK(G)/CPL(G) << P

COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture
• Lower and upper bounds for abstract parallel execution time

• Parallel Array sum and Complexity Analysis

• Abstract execution metrics in HJ

9

COMP 322, Spring 2012 (V.Sarkar)10

Sequential Array Sum Program
(Lecture 1)

int sum = 0;

for (int i=0 ; i < X.length ; i++)

 sum += X[i];

• The original computation graph
is sequential

• We studied a 2-task parallel
program for this problem

• How can we expose more
parallelism?

Computation Graph

COMP 322, Spring 2012 (V.Sarkar)11

Reduction Tree Schema for computing
Array Sum in parallel

Observations:

• This algorithm overwrites X (make a copy if X is needed later)

• stride = distance between array subscript inputs for each addition
• size = number of additions that can be executed in parallel in each

level (stage)

COMP 322, Spring 2012 (V.Sarkar)12

Parallel Program that satisfies dependences
in Reduction Tree schema (for X.length = 8)

finish { // STAGE 1: stride = 1, size = 4 parallel additions

 async X[0]+=X[1]; async X[2]+=X[3];

 async X[4]+=X[5]; async X[6]+=X[7];

}

finish { // STAGE 2: stride = 2, size = 2 parallel additions

 async X[0]+=X[2]; async X[4]+=X[6];

}

finish { // STAGE 3: stride = 4, size = 1 parallel addition

 async X[0]+=X[4];

}

COMP 322, Spring 2012 (V.Sarkar)13

Computation Graph for ArraySum1

COMP 322, Spring 2012 (V.Sarkar)14

Generalization to arbitrary sized arrays
(ArraySum1)

for (int stride = 1; stride < X.length ; stride *= 2) {

 // Compute size = number of additions to be performed in stride

 int size=ceilDiv(X.length,2*stride);

 finish for(int i = 0; i < size; i++)

 async {

 if ((2*i+1)*stride < X.length)

 X[2*i*stride]+=X[(2*i+1)*stride];

 } // finish-for-async

} // for

// Divide x by y, round up to next largest int, and return result

static int ceilDiv(int x, int y) { return (x+y-1) / y; }

COMP 322, Spring 2012 (V.Sarkar)15

Complexity Analysis of ArraySum1
• Define n = X.length

• Assume that each addition takes 1 unit of time
— Ignore all other computations since they are related to the addition by some

constant

• Total number of additions, WORK = n-1 = O(n)

• Critical path length (number of stages), CPL = ceiling(log2(n)) = O(log(n))

• Ideal parallelism = WORK/CPL = O(n) / O(log(n))

• Consider an execution on p processors
— Compute partial sums for batches of n/p elements on each processor
— Use ArraySum1 program to reduce p partial sums to one total sum
— CPL for this version is O(n/p + log(p))
— Parallelism for this version is O(n) / O(n/p + log(p))
— Algorithm is optimal for p = n / log(n), or fewer, processors – why?

COMP 322, Spring 2012 (V.Sarkar)16

Generalized Array Reductions
• ArraySum1 can easily be adapted to reduce any associative

function f
—f(x,y) is said to be associative if f(a,f(b,c)) = f(f(a,b),c) for any

inputs a, b, and c

• Sequential reduction of X, an array of objects of type T:

	
 T result=X[0];

	
 for(int i=1 ; i < X.length ; i++) result=f(result,X[i]);

• Generalized reductions have many interesting applications in
practice, as you will see when we learn about Google’s Map
Reduce framework

• Execution time of f() could be much larger than an integer add,
and justify the use of an async

COMP 322, Spring 2012 (V.Sarkar)17

Generalized Reduction of WordCount
“abc” 3
“def” 4

“def” 2
“ghi” 1

“def” 3
“jkl” 2

“abc” 1
“mno” 2

“jkl” 1
“mno” 1

“abc” 4
“ghi” 3

“abc” 1
“def” 2

“def” 3
“mno” 4

“abc” 3
“def” 6

“ghi” 1

“abc” 1
“def” 3

“jkl” 2

“mno” 2
“abc” 4
“def” 9

“ghi” 1

“jkl” 2

“mno” 2

“abc” 4
“ghi” 3

“jkl” 1

“mno” 1

“abc” 1
“def” 5

“mno” 4

“abc” 5
“def” 5

“ghi” 3

“jkl” 1

“mno” 5
“abc” 9
“def” 14

“ghi” 4

“jkl” 3

“mno” 7

COMP 322, Spring 2012 (V.Sarkar)18

Extension of ArraySum1 to reduce an
arbitrary associative function, f

for (int stride = 1; stride < X.length ; stride *= 2) {

 // Compute size = number of additions to be performed in stride

 int size=ceilDiv(X.length,2*stride);

 finish for(int i = 0; i < size; i++)

 async {

 if ((2*i+1)*stride < X.length)

 X[2*i*stride] = f(X[2*i*stride], X[(2*i+1)*stride]);

 } // finish-for-async

} // for

// Divide x by y, round up to next largest int, and return result

static int ceilDiv(int x, int y) { return (x+y-1) / x; }

COMP 322, Spring 2012 (V.Sarkar)19

HJ Abstract Performance Metrics
• Basic Idea

—Count operations of interest, as in big-O analysis
—Abstraction ignores overheads that occur on real systems

• Calls to perf.addLocalOps()
—Programmer inserts calls of the form, perf.addLocalOps(N),

within a step to indicate abstraction execution of N
application-specific abstract operations
– e.g., floating-point ops, stencil ops, data structure ops

—Multiple calls add to the execution time of the step

• Enabled by selecting “Show Abstract Execution Metrics” in
DrHJ compiler options (or -perf=true runtime option)
—If an HJ program is executed with this option, abstract

metrics are printed at end of program execution with
WORK(G), CPL(G), Ideal Speedup = WORK(G)/ CPL(G)

COMP 322, Spring 2012 (V.Sarkar)

Homework 1 Reminder
• Written assignment, due today

• Submit a softcopy of your solution in Word, PDF, or plain text
format
—Try and use turn-in script for submission, if possible
—Otherwise, email your homework to comp322-staff at

mailman.rice.edu

• See course web site for penalties for late submissions
—Send me email if you have an extenuating circumstance for delay

20

