COMP 322: Fundamentals of
Parallel Programming

Lecture 3: Computation Graphs, Abstract
Performance Metrics, Array Reductions

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 3 13 January 2012 %ﬁ

Acknowledgments for Today’s Lecture

« Cilk lectures, http://supertech.csail.mit.edu/cilk/

2 COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture

- Lower and upper bounds for abstract parallel execution time

 Parallel Array sum and Complexity Analysis

 Abstract execution metrics in HJ

3 COMP 322, Spring 2012 (V.Sarkar) &

Computation Graphs for HJ Programs
(Recap)

* A Computation 6raph (CG) captures the dynamic execution of an
HJ program, for a specific input

* CG nodes are "steps” in the program'’s execution
— A step is a sequential subcomputation without any async, begin-finish
and end-finish operations
* CG edges represent ordering constraints
— "Continue” edges define sequencing of steps within a task
— "Spawn” edges connect parent tasks to child async tasks
— "Join" edges connect the end of each async task to its IEF's end-
finish operations
* All computation graphs must be acyclic
—TIt is not possible for a node to depend on itself

« Computation graphs are examples of “directed acyclic
graphs” (dags)

4 COMP 322, Spring 2012 (V.Sarkar) &

Lower Bounds on Execution Time

Let T, = execution time of computation graph on P processors

—Assume an idealized machine where node N takes TIME(N)
regardless of which processor it executes on, and that
there is no overhead for creating parallel tasks

Observations
—T, = WORK(6)
—T_ = CPL(6)

Lower bounds
—Capacity bound: T, > WORK(G)/P
—Critical path bound: T, = CPL(6)

Putting them together
—T, 2 max(WORK(G)/P, CPL(G))

T
5 COMP 322, Spring 2012 (V.Sarkar) A

Upper Bound for Greedy Scheduling

Theorem [6raham ‘66]. Any
"greedy scheduler” achieves
T, = WORK(6)/P + CPL(6)

A greedy scheduler is one
that never forces a processor
to be idle when one or more
nodes are ready for execution

* A node is ready for execution <l>
if all its predecessors have
been

N
W),

6 COMP 322, Fall 2009 (V.Sarkar)

Upper Bound on Execution Time:
Greedy-Scheduling Theorem

Theorem [6raham ‘66]. Any

greedy scheduler achieves
T, = WORK(6)/P + CPL(6) 9
)

Proof sketch: ()
* Define a time step to be complete if
> P nodes are ready at that time, or o () ()
incomplete otherwise
complete time steps < WORK(G)/P, ® » ®
since each complete step performs P () () ()
L

work. \
incomplete time steps < CPL(G), since () g)
each incomplete step reduces the
span of the unexecuted dag by 1. |

7 COMP 322, Spring 2012 (V.Sarkar)

Optimality of Greedy Schedulers

Combine lower and upper bounds to get
max(WORK(G)/P, CPL(6G)) < T, = WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution
time T, that is within a factor of 2 of the optimal time

(since max(a,b) and (a+b) are within a factor of 2 of
each other, for any a 2 0,b > 0).

Corollary 2: Lower and upper bounds approach the
same value whenever

* There's lots of parallelism, WORK(G)/CPL(G) >> P
« Or there's little parallelism, WORK(G)/CPL(G) << P

8 COMP 322, Fall 2009 (V.Sarkar)

Goals for Today’s Lecture

« Lower and upper bounds for abstract parallel execution time

 Parallel Array sum and Complexity Analysis

 Abstract execution metrics in HJ

9 COMP 322, Spring 2012 (V.Sarkar) D

Sequential Array Sum Program
(Lecture 1)

int sum = O; Computation Graph
for (int i=0 ; i < X.length ; i++) 0 X[0]
sum += X[i]: l
X[1]
* The original computation graph
is sequential X[2]
« We studied a 2-task parallel /
program for this problem
* How can we expose more l
parallelism?

10 COMP 322, Spring 2012 (V.Sarkar)

Reduction Tree Schema for computing
Array Sum in paraliel

X[0] X[1] X[2] X[3] X[4] X[9] X[6] X[7]

N N
@ stride = 1, size = 4

X[0] X[2] X[4] A

stride = 2, size = 2

X[O0] X[4]
@ stride = 4, size = 1

Observations: X[0]

* This algorithm overwrites X (make a copy if X is needed later)

* stride = distance between array subscript inputs for each addition

* size = number of additions that can be executed in parallel in each
level (stage)

11 COMP 322, Spring 2012 (V.Sarkar) A

Parallel Program that satisfies dependences
in Reduction Tree schema (for X.length = 8)
finish { // STAGE 1: stride = 1, size = 4 parallel additions
async X[0]+=X[1]:; async X[2]+=X[3]:
async X[4]+=X[5]; async X[6]+=X[7]:

}

finish { // STAGE 2: stride = 2, size = 2 parallel additions
async X[0]+=X[2]. async X[4]+=X[6]:

}

finish { // STAGE 3: stride = 4, size = 1 parallel addition
async X[0]+=X[4]:

}

12 COMP 322, Spring 2012 (V.Sarkar) &

|
Computation Graph for ArraySum1
End-
Stmtl ——» Stmt3 » Stmt5 ——» Finish
(main)
faadf e 4
X[0} X[0] ;
X f ey X(0]
X[4]
)EE] (X[4] ‘
X[3] ;[:6] STAGE 3
b (STAGE 2
x(s] /i

X[6]
4=

X[7]
» Join edge
@),

STAGE 1
—P Spawn edge

—» Continue edge
COMP 322, Spring 2012 (V.Sarkar)

13

Generalization to arbitrary sized arrays
(ArraySum1)

for (int stride = 1; stride < X.length ; stride *= 2) {
// Compute size = number of additions to be performed in stride
int size=ceilDiv(X.length,2*stride);
finish for(int i = 0; i < size; i++)
async {
if ((2*i+1)*stride < X.length)
X[2*i*stride]+=X[(2*i+1)*stride]:
} // finish-for-async
} // for

// Divide x by y, round up to next largest int, and return result

static int ceilDiv(int x, int y) { return (x+y-1) / y: }

14 COMP 322, Spring 2012 (V.Sarkar)

Complexity Analysis of ArraySum1

« Define n = X.length

« Assume that each addition takes 1 unit of time

— Ignore all other computations since they are related to the addition by some
constant

 Total number of additions, WORK = n-1 = O(n)
« Critical path length (number of stages), CPL = ceiling(log,(n)) = O(log(n))

« Ideal parallelism = WORK/CPL = O(n) / O(log(n))

« Consider an execution on p processors
— Compute partial sums for batches of n/p elements on each processor
— Use ArraySuml program to reduce p partial sums to one total sum
— CPL for this version is O(n/p + log(p))
— Parallelism for this version is O(n) / O(n/p + log(p))
— Algorithm is optimal for p = n / log(n), or fewer, processors - why?

15 COMP 322, Spring 2012 (V.Sarkar) <

16

Generalized Array Reductions

ArraySuml can easily be adapted to reduce any associative
function f

—f(x,y) is said to be associative if f(a,f(b,c)) = f(f(a,b),c) for any
inputs a, b, and ¢

Sequential reduction of X, an array of objects of type T:
T result=X[0].
for(int i=1 ; i < X.length ; i++) result=f(result, X[i]):

Generalized reductions have many interesting applications in
practice, as you will see when we learn about Google’'s Map
Reduce framework

Execution time of f() could be much larger than an integer add,
and justify the use of an async

COMP 322, Spring 2012 (V.Sarkar)

Generalized Reduction of WordCount

“abc” |3 "def” |2 “def” |3 “abc” |1 “ikl” |1 “abc” |4 “abc” |1 “def” |3

\\defll 4 “ghi” 1 \\jklll 2 \\mnoll 2 \\mno" 1 “ghi" 3 \\defll 2 \\mno" 4
X[0] X[1] X[2] X[3] X[4] X[9] X[6] X[7]
@ @ stride = 1
“abc” |3 4 “abc” |1
“def” |6 3 IX[4] X[6] “def” |5
\\ghin 1 1 \\mnou 4
— 1 Stride = 2
uabcn 5_
\\defll 5
stride = 4, ‘ghi” |3
" 9 “jkl” 1
14 “"mno” |5

\\jklll 3

\\mnoll 7

17 COMP 322, Spring 2012 (V.Sarkar) %}Q

Extension of ArraySum1 to reduce an
arbitrary associative function, f

for (int stride = 1; stride < X.length ; stride *= 2) {
// Compute size = number of additions to be performed in stride
int size=ceilDiv(X.length,2*stride);
finish for(int i = 0; i < size; i++)
async {
if ((2*i+1)*stride < X.length)
X[2*i*stride] = f(X[2*i*stride], X[(2*i+1)*stride]);
} // finish-for-async
} // for

// Divide x by y, round up to next largest int, and return result

static int ceilDiv(int x, int y) { return (x+y-1) / x; }

18 COMP 322, Spring 2012 (V.Sarkar) &

HJ Abstract Performance Metrics

 Basic Idea
—Count operations of interest, as in big-O analysis
—Abstraction ignores overheads that occur on real systems

 Calls to perf.addLocalOps()

—Programmer inserts calls of the form, perf.addLocalOps(N),
within a step to indicate abstraction execution of N
application-specific abstract operations

- e.g., floating-point ops, stencil ops, data structure ops

—Multiple calls add to the execution time of the step

« Enabled by selecting "Show Abstract Execution Metrics” in
DrHJ compiler options (or -perf=true runtime option)
—If an HJ program is executed with this option, abstract

metrics are printed at end of program execution with
WORK(G), CPL(G), Ideal Speedup = WORK(G)/ CPL(G)

19

COMP 322, Spring 2012 (V.Sarkar) &

Homework 1 Reminder

« Written assignment, due today

« Submit a softcopy of your solution in Word, PDF, or plain text
format

—Try and use turn-in script for submission, if possible
—Otherwise, email your homework to comp322-staff at
mailman.rice.edu
« See course web site for penalties for late submissions

—Send me email if you have an extenuating circumstance for delay

20 COMP 322, Spring 2012 (V.Sarkar) %@

