
COMP 322: Fundamentals of
Parallel Programming

Lecture 6: Memory Models,
Atomic Variables

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 6 23 January 2012

COMP 322, Spring 2012 (V.Sarkar)

Acknowledgments for Today’s Lecture
• “Introduction to Concurrent Programming in Java”, Joe Bowbeer, David

Holmes, OOPSLA 2007 tutorial slides
—Contributing authors: Doug Lea, Brian Goetz
—Contributing authors: Doug Lea, Tim Peierls, Brian Goetz

• “Engineering Fine-Grained Parallelism Support for Java 7”, Doug Lea,
July 2010

• “Java Concurrency in Practice”, Brian Goetz with Tim Peierls, Joshua Bloch,
Joseph Bowbeer, David Holmes and Doug Lea. Addison-Wesley, 2006.

COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture
• Data Race Semantics and Memory Consistency Models

• Java’s atomic integer classes (AtomicInteger, AtomicLong)

3

COMP 322, Spring 2012 (V.Sarkar)

Data Races are usually Errors,
but not always

• Example of Data Race Error
1. for (p = first; p != null; p = p.next)

2. async p.x = p.y + p.z;
3. for (p = first; p != null; p = p.next)

4. sum += p.x;

• Example of intentional (benign) data race
• Search algorithm that returns any match (need not be the first match)
1. static int index = -1; // static field
2. . . .
3. finish for (int i = 0; i <= N - M; i++) async {
4. for (j = 0; j < M; j++)
5. if (text[i+j] != pattern[j]) break;
6. if (j == M) index = i; // found at offset i
7. }

• In both cases, the semantics of data races still needs to be fully specified

4

COMP 322, Spring 2012 (V.Sarkar)5

Semantics of Data Races
Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. System.out.println("First read = " + p.x);

11. System.out.println("Second read = " + q.x);

12. System.out.println("Third read = " + p.x);

13.}

Task T1 Task T2

Task T3 Task T4

p.x=1; p.x=2;

...=p.x;

...=q.x;

...=p.x;

...=p.x;

...=p.x;

...=p.x;

Can the following values be
printed by tasks T3 & T4?

T3: 0, 0, 0
T4: 1, 2, 1

COMP 322, Spring 2012 (V.Sarkar)

Program Order != Reality, for Racy Programs

• Programmer’s view:
—Everything happens in the order I indicate through the code

statements that I write

• Reality (JVM/compiler & hardware processor):
—Everything happens in whatever order yields best performance, so

long as the program(mer) can’t tell the difference

• For data-race-free programs
—Program order can’t be distinguished from actual order

• For “racy” programs
—Different tasks can see different actions in memory

At different times
In different orders

COMP 322, Spring 2012 (V.Sarkar)

Memory Consistency Models
• A memory consistency model, or memory model, is the part of a

programming language specification that defines what write values
a read may see in the presence of data races.

• We will briefly introduce three memory models, and discuss them
in more detail later in the course
—Sequential Consistency (SC)

– Suitable for specifying semantics at the hardware and OS levels *
—Java Memory Model (JMM)

– Suitable for specifying semantics at application thread level *
—Habanero Java Memory Model (HJMM)

– Suitable for specifying semantics at application task level *

* This is your instructor’s opinion. Memory models are a very
controversial topic in parallel programming!

SC

JMM

HJMM

COMP 322, Spring 2012 (V.Sarkar)8

Sequential Consistency Memory Model

COMP 322, Spring 2012 (V.Sarkar)

Sequential Consistency (SC) Memory Model
• SC constrains all memory operations across all

tasks

– Write → Read

– Write → Write

– Read → Read

– Read → Write

- Simple model for reasoning about data races
at the hardware level, but may lead to
counter-intuitive behavior at the application
level e.g.,

- A programmer may perform modular code
transformations for software engineering
reasons without realizing that they are
changing the program’s semantics

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p.x; (5)

...=q.x; (7)

...=p.x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
2

O
u
t
p
u
t

COMP 322, Spring 2012 (V.Sarkar)10

Consider a “reasonable” code
transformation performed by a programmer

Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. // Assume programmer doesn’t know that p=q

11. int p_x = p.x;

12. System.out.println("First read = " + p_x);

13. System.out.println("Second read = " + q.x);

14. System.out.println("Third read = " + p_x);

15. }

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
1

O
u
t
p
u
t

COMP 322, Spring 2012 (V.Sarkar)11

Consider a “reasonable” code
transformation performed by a programmer

Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. // Assume programmer doesn’t know that p=q

11. int p_x = p.x;

12. System.out.println("First read = " + p_x);

13. System.out.println("Second read = " + q.x);

14. System.out.println("Third read = " + p_x);

15. }

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
1

O
u
t
p
u
t

This reasonable code
transformation resulted in
an illegal output, under the

SC model!

COMP 322, Spring 2012 (V.Sarkar)

The Java Memory Model (JMM)
and the Habanero-Java Memory Model (HJMM)

• Conceptually simple:
—Every time a variable is written, the value is added to the set of “most

recent writes” to the variable
—A read of a variable is allowed to return ANY value from this set

• The JMM defines the rules by which values in the set are removed
—By using ordering relationships (“happens-before”) similar to the

Computation Graph to determine when a value must be overwritten

• HJMM has weaker ordering rules for HJ’s “isolated” statements,
compared to Java’s “synchronized” blocks
—To be discussed later in the course

• Programmer’s goal: through proper use of synchronization
—Ensure the absence of data races, in which case this set will never

contain more than one value and SC, JMM, HJMM will all have the
same semantics

COMP 322, Spring 2012 (V.Sarkar)13

Code Transformation Example
Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. // Assume programmer doesn’t know that p=q

11. int p_x = p.x;

12. System.out.println("First read = " + p_x);

13. System.out.println("Second read = " + q.x);

14. System.out.println("Third read = " + p_x);

15. }

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
1

O
u
t
p
u
t

This output is legal under
the JMM and HJMM!

COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture
• Data Race Semantics and Memory Consistency Models

• Java’s atomic integer classes (AtomicInteger, AtomicLong)

14

COMP 322, Spring 2012 (V.Sarkar)

Atomic Accesses

• An atomic action happens all at once

• Subcomponents of one atomic action cannot be
interleaved with subcomponents of another
atomic action

• Reads and write for reference variables and
primitives (except long and double) are atomic

• Basic safety guarantee: No “out-of-thin-air”
values for references and primitives (except for
long and double)

• A read always returns a value written by some
task, some time in the past

15

COMP 322, Spring 2012 (V.Sarkar)

Why reads and writes on long/double
values may be non-atomic

1. long x; // upper = lower = 0

2. async { x = 1L << 32 + 1L; } // lower=1; upper=1;

3. async { x = 2L << 32 + 2L; } // lower=2; upper=2;

4. async { System.out.println(x); }

5. // Possible output value includes

6. // 1L << 32 + 2L (lower=2, upper=1)

16

upper lower

64 bits

32 bits 32 bits

COMP 322, Spring 2012 (V.Sarkar)

Implementing Shared Counters
• There are many algorithms in which parallel tasks need to

atomically increment a shared counter
—Challenge: an increment (x = x+1) consists of a read and a write
—Even if the read and write are individually atomic, the increment

operation is not

• Java provides a library of “atomic variables” for which each
individual method can be assumed to be an atomic operation

• Atomic operations can be safely invoked on parallel tasks, but
they may increase the critical path length of your parallel
program
—Not a problem if the remaining parallel (non-atomic) work is large

17

COMP 322, Spring 2012 (V.Sarkar)

java.util.concurrent library

• Atomic variables
— Efficient implementations of special-case patterns of isolated statements

• Concurrent Collections:
— Queues, blocking queues, concurrent hash map, …
— Data structures designed for concurrent environments

• Executors, Thread pools and Futures
— Execution frameworks for asynchronous tasking

• Locks and Conditions
— More flexible synchronization control
— Read/write locks

• Synchronizers: Semaphore, Latch, Barrier, Exchanger, Phaser
— Tools for thread coordination

• WARNING: only a small subset of the full java.util.concurrent library can safely be
used in HJ programs
— Atomic variables are part of the safe subset
— We will study the full library later this semester as part of Java Concurrency

COMP 322, Spring 2012 (V.Sarkar)

java.util.concurrent.atomic.AtomicInteger
• Constructors

— new AtomicInteger()

– Creates a new AtomicInteger with initial value 0
— new AtomicInteger(int initialValue)

– Creates a new AtomicInteger with the given initial value

• Selected methods
— int addAndGet(int delta)

– Atomically adds delta to the current value of the atomic
variable, and returns the new value

— int getAndAdd(int delta)

– Atomically returns the current value of the atomic variable, and
adds delta to the current value

• Similar interfaces available for LongInteger
—No worry about lower/upper half issues when using a LongInteger

atomic variable

19

COMP 322, Spring 2012 (V.Sarkar)

Summing Values from Multiple Async’s
in same Finish Scope

• With ArraySum, you learned how to sum an array to a single
value

• How can we perform a sum on values generated by dynamic
async statements?

• Example 1: compute sum of elem values from async tasks in
a loop

finish while (...)
 async { ...; elem = ...; ...; }

• Example 2: compute sum of elem values from async tasks in
a recursive method

void visit(...)
{ ...; elem = ...; async visit(...); ...; }
... finish visit(...); ...

20

COMP 322, Spring 2012 (V.Sarkar)

Solution for Examples 1 and 2
using AtomicInteger

1. import java.util.concurrent.atomic.AtomicInteger;

2. // Example 1: compute sum from async tasks in a loop

3. AtomicInteger a1 = new AtomicInteger();

4. finish while(...)

5. async { ...; elem = ...; a1.addAndGet(elem); ...; }

6. // Example 2: compute sum in a recursive method

7. AtomicInteger a2 = new AtomicInteger();

8. void visit(...)

9. { ...; elem = ...; a2.addAndGet(elem);

10. async visit(...); ...;

11. }

12. ... finish visit(...); ...

21

COMP 322, Spring 2012 (V.Sarkar)

Work-Sharing Pattern using AtomicInteger
1. import java.util.concurrent.atomic.AtomicInteger;

2. . . .

3. String[] X = ... ; int numTasks = ...;

4. AtomicInteger a = new AtomicInteger();

5. . . .

6. finish for (int i=0; i<numTasks; i++)

7. async {

8. do {

9. int j = a.getAndAdd(1);

10. // can also use a.getAndIncrement()

11. if (j >= X.length) break;

12. . . . // Process X[j]

13. } while (true);

14. } // finish-for-async

22

COMP 322, Spring 2012 (V.Sarkar)

Solution Counting Pattern using AtomicInteger
1. import java.util.concurrent.atomic.AtomicInteger;

2. . . .

3. AtomicInteger count = new AtomicInteger();

4. finish nqueens_kernel(new int[0], 0);

5. . . .

6. void nqueens_kernel(int [] a, int depth) {

7. if (size == depth) count.addAndGet(1);

8. else

9. /* try each possible position for queen at depth */

10. for (int i = 0; i < size; i++) async {

11. /* allocate a temporary array and copy array a into it */

12. int [] b = new int [depth+1];

13. System.arraycopy(a, 0, b, 0, depth);

14. b[depth] = i;

15. if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

16. } // for-async

17. } // nqueens_kernel()

23

COMP 322, Spring 2012 (V.Sarkar)

java.util.concurrent library

• Atomic variables
— Efficient implementations of special-case patterns of isolated statements

• Concurrent Collections:
— Queues, blocking queues, concurrent hash map, …
— Data structures designed for concurrent environments

• Executors, Thread pools and Futures
— Execution frameworks for asynchronous tasking

• Locks and Conditions
— More flexible synchronization control
— Read/write locks

• Synchronizers: Semaphore, Latch, Barrier, Exchanger, Phaser
— Tools for thread coordination

• WARNING: only a small subset of the full java.util.concurrent library can safely be
used in HJ programs
— Atomic variables are part of the safe subset
— We will study the full library later this semester as part of Java Concurrency

Why this warning?

24

COMP 322, Spring 2012 (V.Sarkar)25

HJ Compilation and Execution
Environment

Foo.hj

HJ compiler HJ compiler translates Foo.hj to Foo.class, and inserts
calls to HJ runtime as needed

Foo.class

HJ source program --- must contain a class named Foo
with a public static void main(String[] args) method

HJ Runtime Environment =
JRE + HJ libraries +

HJ Multithreaded Runtime

Data Race Detection Output, HJ Computation Graph,
HJ Abstract Performance Metrics
(all enabled by appropriate options)

HJ Program Output

hjc Foo.hj

hj –places m:n Foo

HJ runtime allocates m*n worker threads across m “places”
(default values: m = 1 place, n = # hardware cores/threads)

DrHJ IDE (optional)

COMP 322, Spring 2012 (V.Sarkar)

IR Analysis +
optimizations

Syntactic and
Semantic
analysis

LPG

Polyglot

AST

Parsing

Bytecode

.hj files

IR Gen

Soot

PIR

AST

Frontend

Backend

Under the hood look at the HJ Compiler

Source of error
messages labeled “Polyglot”

Source of error
messages labeled “Soot”

26

COMP 322, Spring 2012 (V.Sarkar)27

Scheduling HJ tasks on processors in a
parallel machine

• HJ runtime creates a small number of worker threads, typically one per
core

• Workers push async’s and/or “continuations” into a logical work queue

• when an async operation is performed

• when an end-finish operation is reached

• Workers pull task/continuation work item when they are idle

COMP 322, Spring 2012 (V.Sarkar)28

Continuations
• A continuation is one of two kinds of program points

—The point in the parent task immediately following an async
—The point immediately following an end-finish

• Continuations are also referred to as task-switching points
—Program points at which a worker may switch execution between

different tasks
1.finish { // F1

2. async A1;

3. finish { // F2

4. async A3;

5. async A4;

6. }

7. S5;

8.}

Continuations

COMP 322, Spring 2012 (V.Sarkar)29

History of the Habanero-Java Language
• New pedagogic language and implementation developed at Rice since 2007

— Derived from Java-based version of X10 language (v1.5) in 2007
– X10 language has evolved significantly since then

— Habanero-Java (HJ) is currently an extension of Java 1.4
– All Java 5 & 6 libraries and classes can be called from HJ programs
– Front-end support for Java 5 constructs (notably, generics) in progress
– HJ compiler generates Java classfiles that execute with HJ runtime on a

standard JRE
• HJ’s parallel extensions are focused on mid-level task parallelism

1. Dynamic task creation & termination: future, async, finish, force, forall,
foreach

2. Mutual exclusion and isolation: isolated
3. Collective and point-to-point synchronization: phaser, next
4. Locality control --- task and data distributions: places, here

• Sequential HJ extensions added for convenience
• extern, point, region, pointwise for, complex32 and complex64 data types,

array views
• Habanero-C and Habanero-Scala are under development with similar constructs

