
CS 181E Fall 2012

Homework 1: due by 11:59pm on Tuesday, September 18, 2012

(Total: 100 points)
Instructor: Vivek Sarkar

Co-Instructor: Ran Libeskind-Hadas

All homeworks should be submitted using the submission system at http://cs.hmc.edu/submit.
In case of problems using the system, please email your homework to cs181ehelp@cs.hmc.edu.

Honor Code Policy: All submitted homeworks are expected to be the result of your individual effort. You
are free to discuss course material and approaches to problems with your other classmates, the teaching
assistants and the professor, but you should never misrepresent someone elses work as your own. If you use
any material from external sources, you must provide proper attribution.

1 Written Assignments (50 points total)

Please submit your solutions to the written assignments in a plain text file named hw1 written.txt in the
submission system.

1.1 Analyzing Finish-Async Programs (25 points)

Consider the computation graph in Figure 1. Each node is labeled with the steps name and execution time
e.g., B(2) refers to step B with an execution time of 2 units. Program execution starts with step A(1) and
ends with step C(1).

1. (10 points) Calculate the total WORK and CPL (critical path length) for this task graph.

2. (15 points) Write a Habanero-Java program with only finish and (non-future, non-await) async con-
structs that can generate this computation graph. The steps should be clearly identified in the program.
The CG edges are not labeled below as spawn, continue, and join; you can make whatever assumptions
you like about the edges when writing your program.

Figure 1: Sample Computation Graph

1 of 3

CS 181E
Fall 2012

Homework 1: due by 11:59pm on Tuesday, September 18, 2012

(Total: 100 points)

1.2 Future Tasks and Data-Driven Futures (25 points)

1. (10 points) Summarize the similarities and differences between futures and data-driven futures in HJ.
In your summary, you should state if it is possible to create a race condition and/or a deadlock when
accessing the value in the future container when using either construct.

2. (15 points) Consider the HJ code fragment below that operates on an array of DataDrivenFutures.
(Note that there are no get() operations in this example, so the only purpose of the put() operation
is to synchronize with await clauses. For simplicity, we just use an empty string "" as the object being
put into a DataDrivenFuture.)

Is it possible for any instance of the async statement in line 6 to be indefinitely blocked on its await
clause? If so, explain how. If not, explain why not.

1. DataDrivenFuture[] A = new DataDrivenFuture[n];

2. for (int i = 0 ; i < n ; i++) {

3. A[i] = new DataDrivenFuture();

4. }

5. for (int i = n-1 ; i >= 1 ; i--) {

6. async await(A[i-1]) {

7. . . .

8. A[i].put();

9. } // async

10. } // for

11. A[0].put();

2 Programming Assignments (50 points total)

2.1 Habanero-Java Setup

Please see Section 2.1 of the Homework 0 handout for instructions on setting up a Habanero-Java installation
for use in this homework.

2.2 Parallel Quicksort (25 points)

Quicksort is a classical sequential sorting algorithm introduced by C.A.R. Hoare in 1961, and is still very
much in use today. A sequential version of the Quicksort algorithm is given in quicksort.hj. For abstract
execution metrics, this version includes a call to addLocalOps(1) each time a key comparison is performed.
As in Homework 0, you can execute an HJ program with an option to generate abstract performance metrics
by selecting “Show Abstract Execution Metrics” in DrHJ’s Compiler Option preferences, or (if you are not
using DrHJ) typing the following command on the command line, “hj -perf=true . . .”. For the sequential
version, the WORK and CPL metrics will be identical.

Your assignment is to convert the sequential program to a correct parallel program with a smaller critical
path length (ideal parallel time) than the sequential version. A correct parallel program will generate the same
output as the sequential version and will also not exhibit any data races. Your parallel solution should only
choose from async, finish, and future constructs, since HJ abstract performance metrics are currently
only supported for these three constructs.

Include the parallel program in your submission, along with ideal parallel times for the sequential and parallel
versions as comments at the top. Also include one or two sentences as comments at the top of the file
with your opinion on whether you feel that the ideal speedup for your program is satisfactory or not. The
submission system will ask for a file named quicksort.hj,which should be your parallel solution.

NOTE: See Section 12 (Parallel Quicksort) in the Module handout for technical details on sequential and
parallel variants of the Quicksort algorithm. Approach 1 is the simplest of the three parallelization approaches

2 of 3

http://www.cs.hmc.edu/courses/2012/fall/cs181e/examples/quicksort.hj

CS 181E
Fall 2012

Homework 1: due by 11:59pm on Tuesday, September 18, 2012

(Total: 100 points)

listed in this section, but you are welcome to use any approach that you choose.

2.3 Parallel N-Queens and Finish Accumulators (25 points)

Download the nqueens.hj program.

This program uses a recursive method, nqueens kernel(), to enumerate all solutions found for the nqueens
problem. The goal of the program is to compute the total number of solutions found for a given value of
n (the default value is n = 12). Currently, program execution reports “Incorrect answer” since a finish
accumulator is provided but not properly computed.

Your task is twofold:

1. Use the finish accumulator provided to fix the nqueens.hj program so that its output is correct. Be
sure to see all FYI and TODO comments in the nqueens.hj file.

2. Compare the performance of sequential and parallel versions of your nqueens program. You can obtain
a sequential version by commenting out the “async” keywords. The performance is automatically timed.

To report the results form this performance comparison, please obtain measurements for different
command-line options (“hj nqueens 12 5 3”, “hj nqueens 12 5 4”, . . .) by varying the third param-
eter, which is the cutoff value threshold used for efficiency. You can keep increasing the threshold until
the execution time becomes too long (> 2 minutes, for example). Further, please make sure that all
performance measurements are obtained on the same machine (which should have 2 or 4 cores.)

Include the parallel program in your submission, along with parallel times for different cutoff values as
comments at the top. The submission system will ask for a file named nqueens.hj.

NOTE: See Section 5 and Section 8.5 in the Module 1 handout for technical details on “finish accumulators”
and the “seq” clause respectively.

3 of 3

http://www.cs.hmc.edu/courses/2012/fall/cs181e/examples/nqueens.hj

	Written Assignments (50 points total)
	Analyzing Finish-Async Programs (25 points)
	Future Tasks and Data-Driven Futures (25 points)

	Programming Assignments (50 points total)
	Habanero-Java Setup
	Parallel Quicksort (25 points)
	Parallel N-Queens and Finish Accumulators (25 points)

