CS 181E: Fundamentals of Parallel Programming

Instructor: Vivek Sarkar
Co-Instructor: Ran Libeskind-Hadas

http://www.cs.hmc.edu/courses/2012/fall/cs181e/
CS 181E Course Information: Fall 2012

- “Fundamentals of Parallel Programming”
- **Lectures:** MW, 4:15pm -- 5:30pm, Parsons 1285
- **Instructor:** Vivek Sarkar (vsarkar@rice.edu)
- **Co-Instructor:** Ran Libeskind-Hadas (hadas@cs.hmc.edu)
- **Grutors:** Matt Prince, Mary Rachel Stimson
- **Habanero Java Support (Rice University):**
 - Vincent Cave (vincent.cave@rice.edu)
 - Shams Imam (shams@rice.edu)
- **Syllabus:** http://www.cs.hmc.edu/courses/2012/fall/cs181e/
 - Bookmark the TWiki page, and start reading lecture handout for **Module 1**
Outline of Today’s Lecture

- Introduction
- Async-Finish Parallel Programming
- Computation Graphs
- Abstract Performance Metrics
- Parallel Array Sum
Acknowledgments for Today’s Lecture

• CS 194 course on “Parallel Programming for Multicore” taught by Prof. Kathy Yelick, UC Berkeley, Fall 2007
 – http://www.cs.berkeley.edu/~yelick/cs194f07/

• “Principles of Parallel Programming”, Calvin Lin & Lawrence Snyder, Addison-Wesley 2009

• Cilk lectures, http://supertech.csail.mit.edu/cilk/

• PrimeSieve.java example
 – http://introcs.cs.princeton.edu/java/14array/PrimeSieve.java.html

• CS 181E Module 1 handout
Scope of Course

- Fundamentals of parallel programming
 - Primitive constructs for task creation & termination, collective & point-to-point synchronization, task and data distribution, and data parallelism
 - Abstract models of parallel computations and computation graphs
 - Parallel algorithms & data structures including lists, trees, graphs, matrices
 - Common parallel programming patterns

- Habanero-Java (HJ) language, developed in the Habanero Multicore Software Research project at Rice

- Written assignments

- Programming assignments
 - Abstract metrics
 - Real parallel systems (lab machines + departmental servers)
What is Parallel Computing?

- **Parallel computing**: using multiple processors in parallel to solve problems more quickly than with a single processor and/or with less energy

- **Examples of a parallel computer**

 — An 8-core **Symmetric Multi-Processor (SMP)** consisting of four dual-core **Chip Multi-Processors (CMPs)**

Source: Figure 1.5 of Lin & Snyder book, Addison-Wesley, 2009
Number of processors in the world’s fastest computers during 2005-2011

Source: http://www.top500.org
All Computers are Parallel Computers --- Why?
Moore’s Law

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 1-2 years.

Resulted in CPU clock speed doubling roughly every 18 months, but not any longer.

Slide source: Jack Dongarra
Current Technology Trends

- Chip density is continuing to increase ~2x every 2 years
 - Clock speed is not
 - Number of processors is doubling instead

- Parallelism must be managed by software

Source: Intel, Microsoft (Sutter) and Stanford (Olukotun, Hammond)
Parallelism Saves Power
(Simplified Analysis)

$$\text{Power} = (\text{Capacitance}) \times (\text{Voltage})^2 \times (\text{Frequency})$$

\[\Rightarrow \text{Power} \propto (\text{Frequency})^3 \]

Baseline example: single 1GHz core with power P

Option A: Increase clock frequency to 2GHz \[\Rightarrow \text{Power} = 8P \]

Option B: Use 2 cores at 1 GHz each \[\Rightarrow \text{Power} = 2P \]

- Option B delivers same performance as Option A with 4x less power ... provided software can be decomposed to run in parallel!
What is Parallel Programming?

• Specification of operations that can be executed in parallel

• A parallel program is decomposed into sequential subcomputations called tasks

• Parallel programming constructs define task creation, termination, and interaction
Example of a Sequential Program: Computing the sum of array elements

```java
int sum = 0;
for (int i=0 ; i < X.length ; i++)
    sum += X[i];
```

Observations:

- The decision to sum up the elements from left to right was arbitrary
- The computation graph shows that all operations must be executed sequentially
Parallelization Strategy for two cores (Two-way Parallel Array Sum Sum)

Task 0: Compute sum of lower half of array
Task 1: Compute sum of upper half of array

Compute total sum

Basic idea:
• Decompose problem into two tasks for partial sums
• Combine results to obtain final answer
• Parallel divide-and-conquer pattern
Outline of Today’s Lecture

• Introduction
• Async-Finish Parallel Programming
• Computation Graphs
• Abstract Performance Metrics
• Parallel Array Sum
Async and Finish Statements for Task Creation and Termination

async S
- Creates a new child task that executes statement S

finish S
- Execute S, but wait until all asyncs in S’s scope have terminated.

// T₀ (Parent task)
STMT₀;
finish { //Begin finish
async {
 STMT₁; //T₁ (Child task)
}
STMT₂; //Continue in T₀
 //Wait for T₁
} //End finish
STMT₃; //Continue in T₀
Two-way Parallel Array Sum using async & finish constructs

1. // Start of Task T0 (main program)
2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields
3. async { // Task T1 computes sum of upper half of array
4. for(int i=X.length/2; i < X.length; i++)
5. sum2 += X[i];
6. }
7. // T0 computes sum of lower half of array
8. for(int i=0; i < X.length/2; i++) sum1 += X[i];
9. // Task T0 waits for Task T1 (join)
10. return sum1 + sum2;

Where does finish go? Time for worksheet #1!
Some Properties of Async & Finish constructs

1. Scope of async/finish can be any arbitrary statement
 - async/finish constructs can be arbitrarily nested e.g.,
 - `finish { async S1; finish { async S2; S3; } S4; } S5;`

2. A method may return before all its async's have terminated
 - Enclose method body in a finish if you don't want this to happen
 - `main() method is enclosed in an implicit finish e.g.,`
 - `main(){ foo();} void foo() {async S1; S2; return;}

3. Each dynamic async task will have a unique Immediately Enclosing Finish (IEF) at runtime

4. Async/finish constructs cannot “deadlock”
 - Cannot have a situation where both task A waits for task B to finish, and task B waits for task A to finish

5. Async tasks can read/write shared data via objects and arrays
 - Local variables have special restrictions (next slide)
Local Variables

Three rules for accessing local variables across tasks in HJ:

1) An async may read the value of any final outer local var

   ```java
   final int i1 = 1; async { ... = i1; /* i1=1 */ }
   ```

2) An async may read the value of any non-final outer local var
 (copied on entry to async like method parameters)

   ```java
   int i2 = 2; // i2=2 is copied on entry to the async
   async { ... = i2; /* i2=2*/}
   ```

   ```java
   i2 = 3; // This assignment is not seen by the above async
   ```

3) An async is not permitted to modify an outer local var

   ```java
   int[] A; async { A = ...; /*ERROR*/ A[i] = ...; /*OK*/ }
   ```
Outline of Today’s Lecture

- Introduction
- Async-Finish Parallel Programming
- Computation Graphs
- Abstract Performance Metrics
- Parallel Array Sum
Which statements can potentially be executed in parallel with each other?

1. `finish { // F1`
2. `async A1;`
3. `finish { // F2`
4. `async A3;`
5. `async A4;`
6. `} // F2`
7. `S5;`
8. `} // F1`

Computation Graph

- `spawn` nodes: A1, A3, A4
- `join` node: F1-end
- Edges:
 - F1-start to F2-start
 - F2-start to F2-end
 - F2-end to S5
 - S5 to F1-end

Diagram:

- (F1-start) → (F2-start) → (F2-end) → (S5) → (F1-end)
- (A1) → (F2-start) → (F2-end)
- (A3) → (A4) → (F2-end)
Computation Graphs for HJ Programs

- A Computation Graph (CG) captures the dynamic execution of an HJ program, for a specific input

- CG nodes are “steps” in the program’s execution
 - A step is a sequential subcomputation without any async, begin-finish and end-finish operations

- CG edges represent ordering constraints
 - “Continue” edges define sequencing of steps within a task
 - “Spawn” edges connect parent tasks to child async tasks
 - “Join” edges connect the end of each async task to its IEF’s end-finish operations

- All computation graphs must be acyclic
 - It is not possible for a node to depend on itself

- Computation graphs are examples of “directed acyclic graphs” (dags)
Example HJ Program with statements v1 ... v23

// Task T1
v1; v2;
finish {
 async {
 // Task T2
 v3;
 } // finish
 async { v4; v5; } // Task T3
 v6;
 async { v7; v8; } // Task T4
 v9;
} // finish
v10; v11;

// Task T2 (contd)

async { v12; v13; v14; } // Task T5
v15;
} // end of task T2
v16; v17; // back in Task T1
} // finish
v18; v19;
finish {
 async {
 // Task T6
 v20; v21; v22; }
 }
}

v23;
Example: Step v16 can potentially execute in parallel with steps v3 … v15
Outline of Today’s Lecture

• Introduction
• Async-Finish Parallel Programming
• Computation Graphs
• Abstract Performance Metrics
• Parallel Array Sum
Complexity Measures for Computation Graphs

Define

- \(\text{TIME}(N) \) = execution time of node \(N \)
- \(\text{WORK}(G) \) = sum of \(\text{TIME}(N) \), for all nodes \(N \) in \(CG \ G \)
 - \(\text{WORK}(G) \) is the total work to be performed in \(G \)
- \(\text{CPL}(G) \) = length of a longest path in \(CG \ G \), when adding up execution times of all nodes in the path
 - Such paths are called critical paths
 - \(\text{CPL}(G) \) is the length of these paths (critical path length)
Ideal Speedup

Define **ideal speedup** of Computation G Graph as the ratio, \(\frac{\text{WORK}(G)}{\text{CPL}(G)} \)

Ideal Speedup is independent of the number of processors that the program executes on, and only depends on the computation graph.

What is the ideal speedup of this graph?

Time for worksheet #2!
Lower Bounds on Execution Time

- Let $T_P = $ execution time of computation graph on P processors
 - Assume an idealized machine where node N takes $\text{TIME}(N)$ regardless of which processor it executes on, and that there is no overhead for creating parallel tasks

- Observations
 - $T_1 = \text{WORK}(G)$
 - $T_\infty = \text{CPL}(G)$

- Lower bounds
 - Capacity bound: $T_p \geq \text{WORK}(G)/P$
 - Critical path bound: $T_p \geq \text{CPL}(G)$

- Putting them together
 - $T_p \geq \max(\text{WORK}(G)/P, \text{CPL}(G))$
Upper Bound for Greedy Scheduling

Theorem [Graham '66]. Any “greedy scheduler” achieves $
T_p \leq \text{WORK}(G)/P + \text{CPL}(G)$

- A greedy scheduler is one that never forces a processor
to be idle when one or more nodes are ready for execution

- A node is ready for execution if all its predecessors have been executed
Upper Bound on Execution Time: Greedy-Scheduling Theorem

Theorem [Graham '66]. Any greedy scheduler achieves

\[T_p \leq \frac{\text{WORK}(G)}{P} + \text{CPL}(G) \]

Proof sketch:

• Define a time step to be complete if \(\geq P \) nodes are ready at that time, or incomplete otherwise.

complete time steps \(\leq \frac{\text{WORK}(G)}{P} \), since each complete step performs \(P \) work.

incomplete time steps \(\leq \text{CPL}(G) \), since each incomplete step reduces the span of the unexecuted dag by 1.
Optimality of Greedy Schedulers

Combine lower and upper bounds to get

$$\max(\text{WORK}(G)/P, \text{CPL}(G)) \leq T_P \leq \text{WORK}(G)/P + \text{CPL}(G)$$

Corollary 1: Any greedy scheduler achieves execution time T_P that is within a factor of 2 of the optimal time (since $\max(a,b)$ and $(a+b)$ are within a factor of 2 of each other, for any $a \geq 0, b \geq 0$).

Corollary 2: Lower and upper bounds approach the same value whenever

- There’s lots of parallelism, $\text{WORK}(G)/\text{CPL}(G) \gg P$
- Or there’s little parallelism, $\text{WORK}(G)/\text{CPL}(G) \ll P$
Outline of Today’s Lecture

- Introduction
- Async-Finish Parallel Programming
- Computation Graphs
- Abstract Performance Metrics
- Parallel Array Sum
Sequential Array Sum Program

```java
int sum = 0;
for (int i=0 ; i < X.length ; i++ )
    sum += X[i];
```

- The original computation graph is sequential.
- We studied a 2-task parallel program for this problem.
- How can we expose more parallelism?
Reduction Tree Schema for computing Array Sum in parallel

Observations:

• This algorithm overwrites X (make a copy if X is needed later)
• stride = distance between array subscript inputs for each addition
• size = number of additions that can be executed in parallel in each level (stage)
CS 181E Course Information: Fall 2012

- “Fundamentals of Parallel Programming”
- Lectures: MW, 4:15pm -- 5:30pm, Parsons 1285
- Syllabus: http://www.cs.hmc.edu/courses/2012/fall/cs181e/
 - Bookmark the TWiki page, and start reading lecture handout for Module 1
- Course Requirements:
 - Homeworks (6) 70%
 - Final Exam 20%
 - Class Participation 10%
- HW0 is assigned today and is due on Tuesday, Sep 11th
Worksheet #1: Insert finish to get correct Two-way Parallel Array Sum program

Your name: __________________________

1. // Start of Task T0 (main program)
2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields
3. async { // Task T1 computes sum of upper half of array
4. for(int i=X.length/2; i < X.length; i++)
5. sum2 += X[i];
6. }
7. // T0 computes sum of lower half of array
8. for(int i=0; i < X.length/2; i++) sum1 += X[i];
9. // Task T0 waits for Task T1 (join)
10. return sum1 + sum2;
Worksheet #2: what is the critical path length and ideal speedup of this graph?

- Assume $\text{time}(N) = 1$ for all nodes in this graph

$\text{WORK}(G) = 18$