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CS 181E Course Information: Fall 2012
• “Fundamentals of Parallel Programming”

• Lectures: MW, 4:15pm -- 5:30pm, Parsons 1285 

• Instructor: Vivek Sarkar (vsarkar@rice.edu)

• Co-Instructor: Ran Libeskind-Hadas  (hadas@cs.hmc.edu)

• Grutors: Matt Prince, Mary Rachel Stimson

• Habanero Java Support (Rice University):
—Vincent Cave (vincent.cave@rice.edu )
—Shams Imam (shams@rice.edu)

• Syllabus: http://www.cs.hmc.edu/courses/2012/fall/cs181e/ 
—Bookmark the TWiki page, and start reading lecture 

handout for Module 1
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Outline of Today’s Lecture

• Introduction

• Async-Finish Parallel Programming

• Computation Graphs

• Abstract Performance Metrics

• Parallel Array Sum
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Acknowledgments for Today’s Lecture

• CS 194 course on “Parallel Programming for 
Multicore” taught by Prof. Kathy Yelick, UC 
Berkeley, Fall 2007
—http://www.cs.berkeley.edu/~yelick/cs194f07/

• “Principles of Parallel Programming”, Calvin Lin & 
Lawrence Snyder, Addison-Wesley 2009

• Cilk lectures, http://supertech.csail.mit.edu/cilk/

• PrimeSieve.java example
—http://introcs.cs.princeton.edu/java/14array/
PrimeSieve.java.html

• CS 181E Module 1 handout
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Scope of Course
• Fundamentals of parallel programming

—Primitive constructs for task creation & termination, collective & 
point-to-point synchronization, task and data distribution, and data 
parallelism

—Abstract models of parallel computations and computation graphs
—Parallel algorithms & data structures including lists, trees, graphs, 

matrices
—Common parallel programming patterns

• Habanero-Java (HJ) language, developed in the Habanero Multicore 
Software Research project at Rice

• Written assignments

• Programming assignments
— Abstract metrics
— Real parallel systems (lab machines + departmental servers)
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What is Parallel Computing?
• Parallel computing: using multiple processors in parallel to solve 

problems more quickly than with a single processor and/or with 
less energy

• Examples of a parallel computer
—An 8-core Symmetric Multi-Processor (SMP) consisting of four 

dual-core Chip Multi-Processors (CMPs)

Source: Figure 1.5 of Lin & Snyder 
book, Addison-Wesley, 2009 

CMP-0 CMP-1 CMP-2 CMP-3
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Number of processors in the world’s 
fastest computers during 2005-2011

Source: http://www.top500.org
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All Computers are Parallel Computers --- 
Why?

8
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Moore’s Law

Resulted in CPU clock speed 
doubling roughly every 18 
months, but not any longer

Gordon Moore (co-founder of 
Intel) predicted in 1965 that 
the transistor density of 
semiconductor chips would 
double roughly every 1-2 
years

Slide source: Jack Dongarra
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CS194 Lecure 15

Current Technology Trends

Source: Intel, Microsoft (Sutter) 
and Stanford (Olukotun, Hammond)

• Chip density is 
continuing to increase 
~2x every 2 years
—Clock speed is not
—Number of processors 

is doubling instead

• Parallelism must be 
managed by software
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Parallelism Saves Power
(Simplified Analysis)

Power = (Capacitance) * (Voltage)2 * (Frequency)

è Power α (Frequency)3

Baseline example: single 1GHz core with power P

Option A: Increase clock frequency to 2GHz è Power = 8P

Option B: Use 2 cores at 1 GHz each è Power = 2P

• Option B delivers same performance as Option A with 4x less 
power … provided software can be decomposed to run in parallel!
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What is Parallel Programming?
• Specification of operations 

that can be executed in 
parallel

• A parallel program is 
decomposed into sequential 
subcomputations called tasks

• Parallel programming 
constructs define task 
creation, termination, and 
interaction

BUS

Core 0 Core 1

L1 cache L1 cache

L2 Cache

Schematic of a dual-core 
Processor

 

Task A Task B

1
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Example of a Sequential Program:
Computing the sum of array elements

int sum = 0;

for (int i=0 ; i < X.length ; i++)

    sum += X[i];

Observations:

• The decision to sum up the 
elements from left to right was 
arbitrary

• The computation graph shows 
that all operations must be 
executed sequentially

Computation Graph
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Parallelization Strategy for two cores
(Two-way Parallel Array Sum)

Basic idea:

• Decompose problem into two tasks for partial sums

• Combine results to obtain final answer

• Parallel divide-and-conquer pattern

+"

Task 0: Compute sum of 
lower half of array

Task 1: Compute sum of 
upper half of array

Compute total sum
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Outline of Today’s Lecture

• Introduction

• Async-Finish Parallel Programming

• Computation Graphs

• Abstract Performance Metrics

• Parallel Array Sum
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Async and Finish Statements for Task 
Creation and Termination

async  S

• Creates a new child task that 
executes statement S

finish S  
§ Execute S, but wait until all 

asyncs in S’s scope have 
terminated. 

// T0(Parent task)
STMT0;
finish {   //Begin finish
  async { 
    STMT1; //T1(Child task)
  } 
  STMT2;   //Continue in T0
                 //Wait for T1
}          //End finish
STMT3;     //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0
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Two-way Parallel Array Sum 
using async & finish constructs

17

Where does finish go?
Time for worksheet #1!

1.  // Start of Task T0 (main program)

2.  sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3.  async { // Task T1 computes sum of upper half of array

4.    for(int i=X.length/2; i < X.length; i++) 

5.      sum2 += X[i];

6.  }

7.  // T0 computes sum of lower half of array

8.  for(int i=0; i < X.length/2; i++) sum1 += X[i]; 

9. // Task T0 waits for Task T1 (join)

10. return sum1 + sum2;
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Some Properties of Async & Finish constructs
1. Scope of async/finish can be any arbitrary statement

— async/finish constructs can be arbitrarily nested e.g.,
—  finish { async S1; finish { async S2; S3; } S4; } S5; 

2. A method may return before all its async’s have terminated
— Enclose method body in a finish if you don’t want this to happen
—  main() method is enclosed in an implicit finish e.g.,
—  main(){ foo();}  void foo() {async S1; S2; return;}

3. Each dynamic async task will have a unique Immediately Enclosing 
Finish (IEF) at runtime

4. Async/finish constructs cannot “deadlock” 
— Cannot have a situation where both task A waits for task B to finish, 

and task B waits for task A to finish

5. Async tasks can read/write shared data via objects and arrays
— Local variables have special restrictions (next slide)

18
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Local Variables
Three rules for accessing local variables across tasks in HJ:

1) An async may read the value of any final outer local var
  final int i1 = 1; async { ... = i1; /* i1=1 */ }

2) An async may read the value of any non-final outer local var 
(copied on entry to async like method parameters)

  int i2 = 2; // i2=2 is  copied on entry to the async

  async { ... = i2; /* i2=2*/}

  i2 = 3; // This assignment is not seen by the above async 

3) An async is not permitted to modify an outer local var
  int[] A; async { A = ...; /*ERROR*/  A[i] = ...; /*OK*/ }
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Outline of Today’s Lecture

• Introduction

• Async-Finish Parallel Programming

• Computation Graphs

• Abstract Performance Metrics

• Parallel Array Sum

20
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Which statements can potentially be 
executed in parallel with each other?

1.  finish { // F1

2.    async A1;

3.      finish { // F2

4.        async A3; 

5.        async A4;

6.      } // F2

7.   S5;

8. } // F1

F1-endF1-start F2-start F2-end

A1

A3

A4

S5

Computation Graph

spawn join
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Computation Graphs for HJ Programs 
• A Computation Graph (CG) captures the dynamic execution of an 

HJ program, for a specific input

• CG nodes are “steps” in the program’s execution
—  A step is a sequential subcomputation without any async, begin-finish 

and end-finish operations

• CG edges represent ordering constraints
—  “Continue” edges define sequencing of steps within a task
—  “Spawn” edges connect parent tasks to child async tasks
—  “Join” edges connect the end of each async task to its IEF’s end-

finish operations

• All computation graphs must be acyclic
—It is not possible for a node to depend on itself

• Computation graphs are examples of “directed acyclic 
graphs” (dags)
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Example HJ Program with statements v1 … v23
// Task T1

v1; v2;

finish {

  async {

    // Task T2

    v3;

    finish {

      async { v4; v5; } // Task T3

      v6; 

      async { v7; v8; } // Task T4

      v9;

    } // finish

    v10; v11;

// Task T2 (contd)

    async { v12; v13; 

             v14; } // Task T5

    v15;

  } // end of task T2

  v16; v17; // back in Task T1

} // finish

v18; v19;

finish {

  async { 

    // Task T6

    v20; v21; v22; }

}

v23;



COMP 322, Fall 2012 (V.Sarkar)24

Computation Graph for previous HJ Example

Example: Step v16 can potentially execute in parallel with steps v3 … v15
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Outline of Today’s Lecture

• Introduction

• Async-Finish Parallel Programming

• Computation Graphs

• Abstract Performance Metrics

• Parallel Array Sum
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Complexity Measures for Computation Graphs

Define

• TIME(N) = execution time of node N

• WORK(G) = sum of TIME(N), for all nodes N in CG G
—WORK(G) is the total work to be performed in G

• CPL(G) = length of a longest path in CG G, when 
adding up execution times of all nodes in the path
—Such paths are called critical paths
—CPL(G) is the length of these paths (critical path 
length)
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Ideal Speedup

Define ideal speedup of 
Computation G Graph as the ratio, 
WORK(G)/CPL(G)

Ideal Speedup is independent of 
the number of processors that the 
program executes on, and only 
depends on the computation graph

What is the ideal speedup of 
this graph?
Time for worksheet #2!
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Lower Bounds on Execution Time

• Let TP = execution time of computation graph on P processors

—Assume an idealized machine where node N takes TIME(N) 
regardless of which processor it executes on, and that 
there is no overhead for creating parallel tasks

• Observations
—T1 = WORK(G)

—T∞ = CPL(G)

• Lower bounds
—Capacity bound: TP  ≥ WORK(G)/P

—Critical path bound: TP  ≥ CPL(G)

• Putting them together
—TP  ≥ max(WORK(G)/P, CPL(G))
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Upper Bound for Greedy Scheduling

• A greedy scheduler is one 
that never forces a processor 
to be idle when one or more 
nodes are ready for execution
 
• A node is ready for execution 
if all its predecessors have 
been executed

Theorem [Graham ’66]. Any 
“greedy scheduler” achieves

TP ≤ WORK(G)/P + CPL(G)
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Upper Bound on Execution Time: 
Greedy-Scheduling Theorem

Proof sketch:
• Define a time step to be complete if 

≥ P nodes are ready at that time, or 
incomplete otherwise

# complete time steps ≤ WORK(G)/P, 
since each complete step performs P 
work.

# incomplete time steps ≤ CPL(G), since 
each incomplete step reduces the 
span of the unexecuted dag by 1.  

P = 3

Theorem [Graham ’66]. Any 
greedy scheduler achieves

TP ≤ WORK(G)/P + CPL(G)
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Optimality of Greedy Schedulers
Combine lower and upper bounds to get 

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution 
time TP that is within a factor of 2 of the optimal time 
(since max(a,b) and (a+b) are within a factor of 2 of 
each other, for any a ≥ 0,b ≥ 0 ).

Corollary 2:  Lower and upper bounds approach the 
same value whenever 

• There’s lots of parallelism, WORK(G)/CPL(G) >> P

• Or there’s little parallelism,  WORK(G)/CPL(G) << P  
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Outline of Today’s Lecture

• Introduction

• Async-Finish Parallel Programming

• Computation Graphs

• Abstract Performance Metrics

• Parallel Array Sum
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Sequential Array Sum Program

int sum = 0;

for (int i=0 ; i < X.length ; i++ )

    sum += X[i];

• The original computation graph 
is sequential

• We studied a 2-task parallel 
program for this problem

• How can we expose more 
parallelism?

Computation Graph
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Reduction Tree Schema for computing 
Array Sum in parallel

Observations:

• This algorithm overwrites X (make a copy if X is needed later)

• stride = distance between array subscript inputs for each addition
• size = number of additions that can be executed in parallel in each 

level (stage)
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CS 181E Course Information: Fall 2012
• “Fundamentals of Parallel Programming”

• Lectures: MW, 4:15pm -- 5:30pm, Parsons 1285

• Syllabus: http://www.cs.hmc.edu/courses/2012/fall/cs181e/ 
—Bookmark the TWiki page, and start reading lecture 

handout for Module 1

• Course Requirements:
—Homeworks (6)         70%
—Final Exam                20%
—Class Participation    10%

• HW0 is assigned today and is due on Tuesday, Sep 11th
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Worksheet #1: Insert finish to get correct 
Two-way Parallel Array Sum program 

1.  // Start of Task T0 (main program)

2.  sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3.  async { // Task T1 computes sum of upper half of array

4.    for(int i=X.length/2; i < X.length; i++) 

5.      sum2 += X[i];

6.  }

7.  // T0 computes sum of lower half of array

8.  for(int i=0; i < X.length/2; i++) sum1 += X[i]; 

9. // Task T0 waits for Task T1 (join)

10. return sum1 + sum2;

36

Your name: _________________________
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Worksheet #2: what is the critical path 
length and ideal speedup of this graph?

• Assume time(N) = 1 for all nodes in this graph

WORK(G) = 18


