b

CS 181E: Fundamentals of
Parallel Programming

Instructor: Vivek Sarkar
Co-Instructor: Ran Libeskind-Hadas

http://www.cs.hmc.edu/courses/2012/fall/cs181e/

CS 181E Lecture 1 5 September 2012

CS 181E Course Information: Fall 2012

"Fundamentals of Parallel Programming”
Lectures: MW, 4:15pm -- 5:30pm, Parsons 1285
Instructor: Vivek Sarkar (vsarkar@rice.edu)

Co-Instructor: Ran Libeskind-Hadas (hadas@cs.hmc.edu)

Grutors: Matt Prince, Mary Rachel Stimson

Habanero Java Support (Rice University):
—Vincent Cave (vincent.cave@rice.edu)
—Shams Imam (shams@rice.edu)

Syllabus: http://www.cs.hmc.edu/courses/2012/fall/cs181e/

—Bookmark the TWiki page, and start reading lecture
handout for Module 1

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline of Today’s Lecture

Introduction

Async-Finish Parallel Programming
Computation Graphs

Abstract Performance Metrics

Parallel Array Sum

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Acknowledgments for Today's Lecture

CS 194 course on "Parallel Programming for
Multicore” taught by Prof. Kathy Yelick, UC
Berkeley, Fall 2007

—http://www.cs.berkeley.edu/~yelick/cs194f07/

"Principles of Parallel Programming”, Calvin Lin &
Lawrence Snyder, Addison-Wesley 2009

Cilk lectures, http://supertech.csail.mit.edu/cilk/

PrimeSieve. java example

—http://introcs.cs.princeton.edu/ java/14array/
PrimeSieve. java.html

CS 181E Module 1 handout

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Scope of Course

» Fundamentals of parallel programming

—Primitive constructs for task creation & termination, collective &
point-to-point synchronization, task and data distribution, and data

parallelism
— Abstract models of parallel computations and computation graphs

—Parallel algorithms & data structures including lists, trees, graphs,
matrices

—Common parallel programming patterns

« Habanero-Java (HJ) language, developed in the Habanero Multicore
Software Research project at Rice

 Woritten assignments

* Programming assignments
— Abstract metrics
— Real parallel systems (lab machines + departmental servers)

5 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

What is Parallel Computing?

Parallel computing: using multiple processors in parallel to solve
problems more quickly than with a single processor and/or with
less energy

Examples of a parallel computer

— An 8-core Symmetric Multi-Processor (SMP) consisting of four
dual-core Chip Multi-Processors (CMPs)

RAM
L3 Cache
I
< Front side bus >
I | I |
Memory bus controller Memory bus controller Memory bus controller Memory bus controller
CMP-0 CMP-1 CMP-2 CMP-3
L2 cache L2 cache L2 cache L2 cache

L1+ |L1-D| L1+t [L1-D || L1t || L1+t [L1-D || L1+t [L1-D] L1+t JLi-D || L1t [L1-D| L1 [L1-D

Processor | Processor Processor | Processor Processor | Processor Processor | Processor Source: Figur‘e 15 Of Lin & Snyder'
PO P P2 P3 Pa Po P6 P book, Addison-Wesley, 2009

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Number of processors in the world’s
fastest computers during 2005-2011

Number of processors (thousands)

800

~
o
o

(o))
o
o

Ul
o
o

S
o
o

w
o
o

N
o
o

100

Nov-O5 Nov-06 Nov-07 Nov-08 Nov-09 Nov-10 Nov-11

Source: http://www.top500.0rg

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

All Computers are Parallel Computers ---

iPhone

£ ¢ £ w1 e et entying wothociny

Wt Sssevsby Rhew 2echng wnd 1 Meching of Do gt

Mo wale, cnmpured i which the hreriend visle
At b b

2 -
o pents o s dua, il autly ot e Covanend
. wibe

Thare are ey res basks i Aeing which v ol pevtend
v sperm whale habuse you, wnd o1 e 1ame

Why?

Computer Air Handling Unit (CRAC)

+Up To 30 Ton Sensible Ca

.+ Air Discharge Can Be Upflow Or Downflow Configuration
«Downflow Configuration Used With Raised Floor To Create
A Pressurized Supply Air Pleaum With Floor Supply Diffusers

r Unit

Individual Colocation Computer Cabinets

N v . . « Typ. Cabinet Footprint (28"W x 36"D x 84°H)

« Typical Capacities Up To 225 KVA Per Uni L y Y vl

 Rovadaoty Thioogh Dual PDUS With Typical Capacities OF 1750 To 3750 Wats Per Cabinet
Integral Static Transfer Switch (STS)

Power Distribution Unit (PDU)\
it

Total Generator C:

Parallcling Gear

=
i

« Uninterruptible Power Supply Modules
+Up To 1000 kVA Per Module

Colocation Suites
« Modular Configuration For
Flexible Suite Sq.Ft. Arcas,
 Suites Consist Of Multiple Cabincts Wi
Secured Partitions (Cages, Walls, Etc.) |

Electrical Primary Switchgear

PP b, 8
- - « Includes Incoming Service And Distribution
g « Dircet Distribation To Mechanical Equipment
% « Distribation To Secondary Electrical Equipment Via UPS
ces . &LA) Pump Room

Heat Rejection Dev

+ Drycoole e e s s Rz wi:% « Used To Pump Condenser/Chilled Water Between Diycoolers And CRAC Units
+Up To 400 Ton Capacity Per Unit W + Additioral Equipment Includes Expansion Tank, Glycol Feed System

« Mounted At Grade Or On Roof k;))‘ *N+1 Design (Standby Pump)

+ N1 Design

aN>=0ID

rfsus

&)

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Emergency Diesel Generators

Total Electrical Load To Buikling

|« Multipte Generators Can Be Electrically Combined With

+ Can Be Located Indoors Or Outdoors At Grade Or On Roof.
« Outdoor Applications Require Sound Atienuating Enclosures

Fuel Oil Storage Tanks
« Tark Capacity Dependant On Length
Of Generator Oy

Grade O Indoors

« Cabinets And Battery Strings Or Rotary Flywhecls
«Multiple Redundancy Configurations Can Be Designed

Moore’s Law

1976 1980 1985 1990 1995

Kl
10M Micro 500
(transistors) 2000 (mips)
" A
80486
100K @ roase 1.0
80286
10K R 0.1
“mqt‘ BO80 i
Gordon Moore (co-founder of
Intel) predicted in 1965 that .
the transistor density of Resulted in CPU clock speed
semiconductor chips would doubling roughly every 18
double roughly every 1-2 months, but not any longer

years

Slide source: Jack Dongarra

9 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Current Technology Trends

10,000,000
 Chip density is
continuing to increase
~2X every 2 years
—Clock speed is not 100,000

—Number of processors
is doubling instead 10,000

e Parallelism must be
managed by software 1,000

100

10

= Transistors (000)

1 =1 i | }
Source: Intel, Microsoft (Sutter) Rl | | | | ¢ Clock Speed (MHz)
‘ . g e | ; & Power (W)
and Stanford (Olukotun, Hammond) | | | | # Perf/Clock (ILP)
0 ‘ ' ‘ ‘ 1 ‘

10 CS 181 1970 1975 1980 1985 1990 1995 2000 2005 2010

Parallelism Saves Power
(Simplified Analysis)

Power = (Capacitance) * (Voltage)? * (Frequency)

=>» Power a (Frequency)?

Baseline example: single 16Hz core with power P

Option A: Increase clock frequency to 26Hz > Power = 8P

Option B: Use 2 cores at 1 GHz each = Power = 2P

« Option B delivers same performance as Option A with 4x less
power ... provided software can be decomposed to run in parallell

11 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

What is Parallel Programming?

« Specification of operations
that can be executed in
parallel

Task A Task B

* A parallel program is E E
decomposed into sequential
subcomputations called tasks

* Parallel programming
constructs define task %
creation, termination, and
interaction

Schematic of a dual-core
Processor

12 CS 181E, Fall 2012 (VlSarkar, R.Libeskind-Hadas)

Example of a Sequential Program:
Computing the sum of array elements

int sum = O;

Computation Graph

for (int i=0 ; i < X.length ; i++)

sum += X[i]; O X[O]
Observations: X[1]
* The decision to sum up the

elements from left to right was X[2]

arbitrary é} /

* The computation graph shows
that all operations must be)
executed sequentially

13 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Parallelization Strategy for two cores
(Two-way Parallel Array Sum)

Task O: Compute sum of Task 1: Compute sum of
lower half of array upper half of array
®

|

Compute total sum
Basic idea:

« Decompose problem into two tasks for partial sums

« Combine results to obtain final answer

* Parallel divide-and-conquer pattern

14 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

15

Outline of Today’s Lecture

Introduction

Async-Finish Parallel Programming

Computation Graphs
Abstract Performance Metrics

Parallel Array Sum

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Async and Finish Statements for Task
Creation and Termination

async S finish S

= Execute S, but wait until all
asyncs in S’s scope have
terminated.

« Creates a new child task that
executes statement S

// T,(Parent task)
STMTO ;
finish { //Begin finish
async {
STMT1; //T,(Child task)
}
STMT2; //Continue in T,
//Wait for T,
} //End finish
STMT3; //Continue in T,

16 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Two-way Parallel Array Sum
using async & finish constructs

©O© o0 I o O s w DD

// Start of Task TO (main program)
suml = 0; sum2 = 0; // suml & sum2 are static fields
async { // Task Tl computes sum of upper half of array
for (int i=X.length/2; i < X.length; i++)
sum2 += X[1i];
}
// TO computes sum of lower half of array

for (int i=0; i < X.length/2; i++) suml += X[i];

. // Task TO waits for Task Tl (join)
10.

return suml + sum2;)

Where does finish go?
Time for worksheet #1!

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Some Properties of Async & Finish constructs

1. Scope of async/finish can be any arbitrary statement
— async/finish constructs can be arbitrarily nested e.g.,
— finish { async S1; finish { async S2; S3; } S4; } S5;

2. A method may return before all its async's have terminated
— Enclose method body in a finish if you don't want this to happen
— main() method is enclosed in an implicit finish e.g.,

— main(){ foo();} wvoid foo() {async S1; S2; return;}

3. Each dynamic async task will have a unique Immediately Enclosing
Finish (IEF) at runtime

4. Async/finish constructs cannot “deadlock”

— Cannot have a situation where both task A waits for task B to finish,
and task B waits for task A to finish

5. Async tasks can read/write shared data via objects and arrays

— Local variables have special restrictions (next slide)

18 COMP 322, Fall 2012 (V.Sarkar) &

Local Variables

Three rules for accessing local variables across tasks in HJ:

1) An async may read the value of any final outer local var
final int il = 1; async { ... = il; /* il=1 */ }

2) An async may read the value of any non-final outer local var
(copied on entry to async like method parameters)

int i2 = 2; // i2=2 is copied on entry to the async
async { ... = 1i2; /[/* i2=2*/}

i2 = 3; // This assignment is not seen by the above async

3) An async is not permitted to modify an outer local var
int[] A; async { A = ...; /*ERROR*/ A[i] = ...; /*OK*/ }

19 COMP 322, Fall 2012 (V.Sarkar) %@

20

Outline of Today’s Lecture

Introduction

Async-Finish Parallel Programming

Computation Graphs
Abstract Performance Metrics

Parallel Array Sum

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Which statements can potentially be
executed in parallel with each other?

L. finish { // Fl Computation Graph

2. async Al;

3. finish { // F2 0

4. async A3; spawn AN\ el join

. async as; T s

6. } // F2

7. S5; @ e @
8.} // F1 A

21 COMP 322, Fall 2012 (V.Sarkar)),

Computation Graphs for HJ Programs

* A Computation 6raph (CG) captures the dynamic execution of an
HJ program, for a specific input

* CG nodes are "steps” in the program'’s execution
— A step is a sequential subcomputation without any async, begin-finish
and end-finish operations
* CG edges represent ordering constraints
— "Continue” edges define sequencing of steps within a task
— "Spawn” edges connect parent tasks to child async tasks
— "Join" edges connect the end of each async task to its IEF's end-
finish operations
* All computation graphs must be acyclic
—TIt is not possible for a node to depend on itself

« Computation graphs are examples of “directed acyclic
graphs” (dags)

22 COMP 322, Spring 2012 (V.Sarkar) &

Example HJ Program with statements v1 ... v23

// Task T1
vl; v2;
finish {
async {
// Task T2
v3;
finish {
async { v4; v5; } // Task T3
v6:
async { v7: v8; } // Task T4
v9;
} // finish
vi0; vi1;

// Task T2 (contd)
async { v12; v13;
vli4; } // Task TH
vl5;
} // end of task T2
v16; v17; // back in Task T1
} // finish
vi8; v19;
finish {
async {
// Task T6
v20: v21; v22; }

v23;

23 COMP 322, Fall 2012 (V.Sarkar)

Computation Graph for previous HJ Example

—» Continue edge el Spawn edge ------ > Join edge

Example: Step v16 can potentially execute in parallel with steps v3 .. v15

24 COMP 322, Fall 2012 (V.Sarkar)),

25

Outline of Today’s Lecture

Introduction
Async-Finish Parallel Programming
Computation Graphs

Abstract Performance Metrics

Parallel Array Sum

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Complexity Measures for Computation Graphs

Define
 TIME(N) = execution time of node N

 WORK(6G) = sum of TIME(N), for all nodes N in C6 6
—WORK(6G) is the total work to be performed in G

* CPL(6) = length of a longest path in CG 6, when
adding up execution times of all nodes in the path
—Such paths are called critical paths

—CPL(6G) is the length of these paths (critical path
length)

26 COMP 322, Fall 2012 (V.Sarkar) &

Ideal Speedup

Define ideal speedup of
Computation G Graph as the ratio, @

WORK(G)/CPL(G)

Ideal Speedup is independent of
the number of processors that the
program executes on, and only
depends on the computation graph

-
What is the ideal speedup of7
this graph?

J ime for worksheet #2l

J

27 COMP 322, Fall 2012 (V.Sarkar)

Lower Bounds on Execution Time

- Let T, = execution time of computation graph on P processors

—Assume an idealized machine where node N takes TIME(N)
regardless of which processor it executes on, and that
there is no overhead for creating parallel tasks

Observations
—T, = WORK(6)
—T_ = CPL(6)

* Lower bounds
—Capacity bound: T, > WORK(G)/P
—Critical path bound: T, = CPL(6)

Putting them together
—T, 2 max(WORK(G)/P, CPL(G))

28 COMP 322, Spring 2012 (V.Sarkar) G

Upper Bound for Greedy Scheduling

Theorem [6raham ‘66]. Any
"greedy scheduler” achieves
T, = WORK(6)/P + CPL(6)

A greedy scheduler is one
that never forces a processor
to be idle when one or more
nodes are ready for execution

* A node is ready for execution <l>
if all its predecessors have
been

N
W),

29 COMP 322, Fall 2009 (V.Sarkar)

Upper Bound on Execution Time:
Greedy-Scheduling Theorem

Theorem [6raham ‘66]. Any
greedy scheduler achieves
T, = WORK(6)/P + CPL(6) Q
)

Proof sketch: ()

* Define a time step to be complete if
> P nodes are ready at that time, or o () ()
incomplete otherwise

complete time steps < WORK(G)/P, ® » ®
since each complete step performs P () () ()
work. \

incomplete time steps < CPL(G), since () g)
each incomplete step reduces the
span of the unexecuted dag by 1. |

30 COMP 322, Spring 2012 (V.Sarkar)

Optimality of Greedy Schedulers

Combine lower and upper bounds to get
max(WORK(6)/P, CPL(G)) < T, = WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution
time T, that is within a factor of 2 of the optimal time

(since max(a,b) and (a+b) are within a factor of 2 of
each other, for any a 2 0,b > 0).

Corollary 2: Lower and upper bounds approach the
same value whenever

* There's lots of parallelism, WORK(G)/CPL(G) >> P
« Or there's little parallelism, WORK(G)/CPL(G) << P

31 COMP 322, Fall 2009 (V.Sarkar)

32

Outline of Today’s Lecture

Introduction

Async-Finish Parallel Programming
Computation Graphs

Abstract Performance Metrics

Parallel Array Sum

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Sequential Array Sum Program

int sum = O; Computation Graph
for (int i=0 ; i < X.length ; i++) 0 X[0]
sum += X[i]: l
X[1]
* The original computation graph
is sequential X[2]
« We studied a 2-task parallel /
program for this problem
* How can we expose more l
parallelism?

33 COMP 322, Spring 2012 (V.Sarkar)

Reduction Tree Schema for computing
Array Sum in paraliel

X[0] X[1] X[2] X[3] X[4] X[9] X[6] X[7]

N N
@ stride = 1, size = 4

X[0] X[2] X[4] A

stride = 2, size = 2

X[O0] X[4]
@ stride = 4, size = 1

Observations: X[0]

* This algorithm overwrites X (make a copy if X is needed later)

* stride = distance between array subscript inputs for each addition

* size = number of additions that can be executed in parallel in each
level (stage)

34 COMP 322, Spring 2012 (V.Sarkar) A

CS 181E Course Information: Fall 2012

* “Fundamentals of Parallel Programming”
* Lectures: MW, 4:15pm -- 5:30pm, Parsons 1285

 Syllabus: http://www.cs.hmc.edu/courses/2012/fall/cs181e/
—Bookmark the TWiki page, and start reading lecture
handout for Module 1

» Course Requirements:
—Homeworks (6) 70%
—Final Exam 20%

—Class Participation 10%

 HWO is assigned today and is due on Tuesday, Sep 11th

35 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #1: Insert finish to get correct
Two-way Parallel Array Sum program

Your name:
1 // Start of Task TO (main program)
2 suml = 0; sum2 = 0; // suml & sum2 are static fields
3 async { // Task Tl computes sum of upper half of array
4 for (int i=X.length/2; i < X.length; i++)
5. sum2 += X[i];
o }
7 // TO computes sum of lower half of array
8 for (int i=0; i < X.length/2; i++) suml += X[i];
9. // Task TO waits for Task Tl (join)
10. return suml + sum2;

36 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #2: what is the critical path
length and ideal speedup of this graph?

« Assume time(N) = 1 for all nodes in this graph

WORK(G) = 18

A
37 COMP 322, Fall 2012 (V.Sarkar) %}

