
CS 181E: Fundamentals of
Parallel Programming

Instructor: Vivek Sarkar
Co-Instructor: Ran Libeskind-Hadas

http://www.cs.hmc.edu/courses/2012/fall/cs181e/

CS 181E Lecture 1 5 September 2012

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)2

CS 181E Course Information: Fall 2012
• “Fundamentals of Parallel Programming”

• Lectures: MW, 4:15pm -- 5:30pm, Parsons 1285

• Instructor: Vivek Sarkar (vsarkar@rice.edu)

• Co-Instructor: Ran Libeskind-Hadas (hadas@cs.hmc.edu)

• Grutors: Matt Prince, Mary Rachel Stimson

• Habanero Java Support (Rice University):
—Vincent Cave (vincent.cave@rice.edu)
—Shams Imam (shams@rice.edu)

• Syllabus: http://www.cs.hmc.edu/courses/2012/fall/cs181e/
—Bookmark the TWiki page, and start reading lecture

handout for Module 1

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline of Today’s Lecture

• Introduction

• Async-Finish Parallel Programming

• Computation Graphs

• Abstract Performance Metrics

• Parallel Array Sum

3

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)4

Acknowledgments for Today’s Lecture

• CS 194 course on “Parallel Programming for
Multicore” taught by Prof. Kathy Yelick, UC
Berkeley, Fall 2007
—http://www.cs.berkeley.edu/~yelick/cs194f07/

• “Principles of Parallel Programming”, Calvin Lin &
Lawrence Snyder, Addison-Wesley 2009

• Cilk lectures, http://supertech.csail.mit.edu/cilk/

• PrimeSieve.java example
—http://introcs.cs.princeton.edu/java/14array/
PrimeSieve.java.html

• CS 181E Module 1 handout

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)5

Scope of Course
• Fundamentals of parallel programming

—Primitive constructs for task creation & termination, collective &
point-to-point synchronization, task and data distribution, and data
parallelism

—Abstract models of parallel computations and computation graphs
—Parallel algorithms & data structures including lists, trees, graphs,

matrices
—Common parallel programming patterns

• Habanero-Java (HJ) language, developed in the Habanero Multicore
Software Research project at Rice

• Written assignments

• Programming assignments
— Abstract metrics
— Real parallel systems (lab machines + departmental servers)

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)6

What is Parallel Computing?
• Parallel computing: using multiple processors in parallel to solve

problems more quickly than with a single processor and/or with
less energy

• Examples of a parallel computer
—An 8-core Symmetric Multi-Processor (SMP) consisting of four

dual-core Chip Multi-Processors (CMPs)

Source: Figure 1.5 of Lin & Snyder
book, Addison-Wesley, 2009

CMP-0 CMP-1 CMP-2 CMP-3

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)7

Number of processors in the world’s
fastest computers during 2005-2011

Source: http://www.top500.org

0"

100"

200"

300"

400"

500"

600"

700"

800"

Nov.05" Nov.06" Nov.07" Nov.08" Nov.09" Nov.10" Nov.11"

N
um

be
r'o

f'p
ro
ce
ss
or
s'(
th
ou

sa
nd

s)
'

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

All Computers are Parallel Computers ---
Why?

8

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)9

Moore’s Law

Resulted in CPU clock speed
doubling roughly every 18
months, but not any longer

Gordon Moore (co-founder of
Intel) predicted in 1965 that
the transistor density of
semiconductor chips would
double roughly every 1-2
years

Slide source: Jack Dongarra

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)10
CS194 Lecure 15

Current Technology Trends

Source: Intel, Microsoft (Sutter)
and Stanford (Olukotun, Hammond)

• Chip density is
continuing to increase
~2x every 2 years
—Clock speed is not
—Number of processors

is doubling instead

• Parallelism must be
managed by software

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)11

Parallelism Saves Power
(Simplified Analysis)

Power = (Capacitance) * (Voltage)2 * (Frequency)

è Power α (Frequency)3

Baseline example: single 1GHz core with power P

Option A: Increase clock frequency to 2GHz è Power = 8P

Option B: Use 2 cores at 1 GHz each è Power = 2P

• Option B delivers same performance as Option A with 4x less
power … provided software can be decomposed to run in parallel!

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)12

What is Parallel Programming?
• Specification of operations

that can be executed in
parallel

• A parallel program is
decomposed into sequential
subcomputations called tasks

• Parallel programming
constructs define task
creation, termination, and
interaction

BUS

Core 0 Core 1

L1 cache L1 cache

L2 Cache

Schematic of a dual-core
Processor

Task A Task B

1

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)13

Example of a Sequential Program:
Computing the sum of array elements

int sum = 0;

for (int i=0 ; i < X.length ; i++)

 sum += X[i];

Observations:

• The decision to sum up the
elements from left to right was
arbitrary

• The computation graph shows
that all operations must be
executed sequentially

Computation Graph

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)14

Parallelization Strategy for two cores
(Two-way Parallel Array Sum)

Basic idea:

• Decompose problem into two tasks for partial sums

• Combine results to obtain final answer

• Parallel divide-and-conquer pattern

+"

Task 0: Compute sum of
lower half of array

Task 1: Compute sum of
upper half of array

Compute total sum

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline of Today’s Lecture

• Introduction

• Async-Finish Parallel Programming

• Computation Graphs

• Abstract Performance Metrics

• Parallel Array Sum

15

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)16

Async and Finish Statements for Task
Creation and Termination

async S

• Creates a new child task that
executes statement S

finish S
§ Execute S, but wait until all

asyncs in S’s scope have
terminated.

// T0(Parent task)
STMT0;
finish { //Begin finish
 async {
 STMT1; //T1(Child task)
 }
 STMT2; //Continue in T0
 //Wait for T1
} //End finish
STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Two-way Parallel Array Sum
using async & finish constructs

17

Where does finish go?
Time for worksheet #1!

1. // Start of Task T0 (main program)

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. async { // Task T1 computes sum of upper half of array

4. for(int i=X.length/2; i < X.length; i++)

5. sum2 += X[i];

6. }

7. // T0 computes sum of lower half of array

8. for(int i=0; i < X.length/2; i++) sum1 += X[i];

9. // Task T0 waits for Task T1 (join)

10. return sum1 + sum2;

COMP 322, Fall 2012 (V.Sarkar)

Some Properties of Async & Finish constructs
1. Scope of async/finish can be any arbitrary statement

— async/finish constructs can be arbitrarily nested e.g.,
— finish { async S1; finish { async S2; S3; } S4; } S5;

2. A method may return before all its async’s have terminated
— Enclose method body in a finish if you don’t want this to happen
— main() method is enclosed in an implicit finish e.g.,
— main(){ foo();} void foo() {async S1; S2; return;}

3. Each dynamic async task will have a unique Immediately Enclosing
Finish (IEF) at runtime

4. Async/finish constructs cannot “deadlock”
— Cannot have a situation where both task A waits for task B to finish,

and task B waits for task A to finish

5. Async tasks can read/write shared data via objects and arrays
— Local variables have special restrictions (next slide)

18

COMP 322, Fall 2012 (V.Sarkar)19

Local Variables
Three rules for accessing local variables across tasks in HJ:

1) An async may read the value of any final outer local var
 final int i1 = 1; async { ... = i1; /* i1=1 */ }

2) An async may read the value of any non-final outer local var
(copied on entry to async like method parameters)

 int i2 = 2; // i2=2 is copied on entry to the async

 async { ... = i2; /* i2=2*/}

 i2 = 3; // This assignment is not seen by the above async

3) An async is not permitted to modify an outer local var
 int[] A; async { A = ...; /*ERROR*/ A[i] = ...; /*OK*/ }

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline of Today’s Lecture

• Introduction

• Async-Finish Parallel Programming

• Computation Graphs

• Abstract Performance Metrics

• Parallel Array Sum

20

COMP 322, Fall 2012 (V.Sarkar)21

Which statements can potentially be
executed in parallel with each other?

1. finish { // F1

2. async A1;

3. finish { // F2

4. async A3;

5. async A4;

6. } // F2

7. S5;

8. } // F1

F1-endF1-start F2-start F2-end

A1

A3

A4

S5

Computation Graph

spawn join

COMP 322, Spring 2012 (V.Sarkar)22

Computation Graphs for HJ Programs
• A Computation Graph (CG) captures the dynamic execution of an

HJ program, for a specific input

• CG nodes are “steps” in the program’s execution
— A step is a sequential subcomputation without any async, begin-finish

and end-finish operations

• CG edges represent ordering constraints
— “Continue” edges define sequencing of steps within a task
— “Spawn” edges connect parent tasks to child async tasks
— “Join” edges connect the end of each async task to its IEF’s end-

finish operations

• All computation graphs must be acyclic
—It is not possible for a node to depend on itself

• Computation graphs are examples of “directed acyclic
graphs” (dags)

COMP 322, Fall 2012 (V.Sarkar)23

Example HJ Program with statements v1 … v23
// Task T1

v1; v2;

finish {

 async {

 // Task T2

 v3;

 finish {

 async { v4; v5; } // Task T3

 v6;

 async { v7; v8; } // Task T4

 v9;

 } // finish

 v10; v11;

// Task T2 (contd)

 async { v12; v13;

 v14; } // Task T5

 v15;

 } // end of task T2

 v16; v17; // back in Task T1

} // finish

v18; v19;

finish {

 async {

 // Task T6

 v20; v21; v22; }

}

v23;

COMP 322, Fall 2012 (V.Sarkar)24

Computation Graph for previous HJ Example

Example: Step v16 can potentially execute in parallel with steps v3 … v15

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline of Today’s Lecture

• Introduction

• Async-Finish Parallel Programming

• Computation Graphs

• Abstract Performance Metrics

• Parallel Array Sum

25

COMP 322, Fall 2012 (V.Sarkar)26

Complexity Measures for Computation Graphs

Define

• TIME(N) = execution time of node N

• WORK(G) = sum of TIME(N), for all nodes N in CG G
—WORK(G) is the total work to be performed in G

• CPL(G) = length of a longest path in CG G, when
adding up execution times of all nodes in the path
—Such paths are called critical paths
—CPL(G) is the length of these paths (critical path
length)

COMP 322, Fall 2012 (V.Sarkar)27

Ideal Speedup

Define ideal speedup of
Computation G Graph as the ratio,
WORK(G)/CPL(G)

Ideal Speedup is independent of
the number of processors that the
program executes on, and only
depends on the computation graph

What is the ideal speedup of
this graph?
Time for worksheet #2!

COMP 322, Spring 2012 (V.Sarkar)28

Lower Bounds on Execution Time

• Let TP = execution time of computation graph on P processors

—Assume an idealized machine where node N takes TIME(N)
regardless of which processor it executes on, and that
there is no overhead for creating parallel tasks

• Observations
—T1 = WORK(G)

—T∞ = CPL(G)

• Lower bounds
—Capacity bound: TP ≥ WORK(G)/P

—Critical path bound: TP ≥ CPL(G)

• Putting them together
—TP ≥ max(WORK(G)/P, CPL(G))

COMP 322, Fall 2009 (V.Sarkar)29

Upper Bound for Greedy Scheduling

• A greedy scheduler is one
that never forces a processor
to be idle when one or more
nodes are ready for execution

• A node is ready for execution
if all its predecessors have
been executed

Theorem [Graham ’66]. Any
“greedy scheduler” achieves

TP ≤ WORK(G)/P + CPL(G)

COMP 322, Spring 2012 (V.Sarkar)30

Upper Bound on Execution Time:
Greedy-Scheduling Theorem

Proof sketch:
• Define a time step to be complete if

≥ P nodes are ready at that time, or
incomplete otherwise

complete time steps ≤ WORK(G)/P,
since each complete step performs P
work.

incomplete time steps ≤ CPL(G), since
each incomplete step reduces the
span of the unexecuted dag by 1.

P = 3

Theorem [Graham ’66]. Any
greedy scheduler achieves

TP ≤ WORK(G)/P + CPL(G)

COMP 322, Fall 2009 (V.Sarkar)31

Optimality of Greedy Schedulers
Combine lower and upper bounds to get

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution
time TP that is within a factor of 2 of the optimal time
(since max(a,b) and (a+b) are within a factor of 2 of
each other, for any a ≥ 0,b ≥ 0).

Corollary 2: Lower and upper bounds approach the
same value whenever

• There’s lots of parallelism, WORK(G)/CPL(G) >> P

• Or there’s little parallelism, WORK(G)/CPL(G) << P

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline of Today’s Lecture

• Introduction

• Async-Finish Parallel Programming

• Computation Graphs

• Abstract Performance Metrics

• Parallel Array Sum

32

COMP 322, Spring 2012 (V.Sarkar)33

Sequential Array Sum Program

int sum = 0;

for (int i=0 ; i < X.length ; i++)

 sum += X[i];

• The original computation graph
is sequential

• We studied a 2-task parallel
program for this problem

• How can we expose more
parallelism?

Computation Graph

COMP 322, Spring 2012 (V.Sarkar)34

Reduction Tree Schema for computing
Array Sum in parallel

Observations:

• This algorithm overwrites X (make a copy if X is needed later)

• stride = distance between array subscript inputs for each addition
• size = number of additions that can be executed in parallel in each

level (stage)

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)35

CS 181E Course Information: Fall 2012
• “Fundamentals of Parallel Programming”

• Lectures: MW, 4:15pm -- 5:30pm, Parsons 1285

• Syllabus: http://www.cs.hmc.edu/courses/2012/fall/cs181e/
—Bookmark the TWiki page, and start reading lecture

handout for Module 1

• Course Requirements:
—Homeworks (6) 70%
—Final Exam 20%
—Class Participation 10%

• HW0 is assigned today and is due on Tuesday, Sep 11th

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #1: Insert finish to get correct
Two-way Parallel Array Sum program

1. // Start of Task T0 (main program)

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. async { // Task T1 computes sum of upper half of array

4. for(int i=X.length/2; i < X.length; i++)

5. sum2 += X[i];

6. }

7. // T0 computes sum of lower half of array

8. for(int i=0; i < X.length/2; i++) sum1 += X[i];

9. // Task T0 waits for Task T1 (join)

10. return sum1 + sum2;

36

Your name: _________________________

COMP 322, Fall 2012 (V.Sarkar)37

Worksheet #2: what is the critical path
length and ideal speedup of this graph?

• Assume time(N) = 1 for all nodes in this graph

WORK(G) = 18

