b

CS 181E: Fundamentals of
Parallel Programming

Instructor: Vivek Sarkar
Co-Instructor: Ran Libeskind-Hadas

http://www.cs.hmc.edu/courses/2012/fall/cs181e/

CS 181E Lecture 10 8 October 2012

Recap of Lecture 9

Monitors:
A monitor is a passive object containing local variables

(private data) and methods that operate on local data
(monitor regions)

Only one task can be active in a monitor at a time,
executing some monitor region

Actors:

An actor has mutable local state, a process() method to
manipulate local state, and a thread of control to
process incoming messages

An actor may process messages, send messages, change
local state, and create new actors

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #9 solution:
Interaction between finish and actors

What would happen if the end-finish operation from slide 29 was
moved from line 13 to line 11 as shown below?

1. finish {

2. int numThreads = 4;

3. int numberOfHops = 10;

4. ThreadRingActor[] ring = new ThreadRingActor[numThreads];
5. for(int i=numThreads-1;i>=0; i--) {
6. ring[i] = new ThreadRingActor(i);
7. ring[i].start();

8. if (i < numThreads - 1) {

9. ring[i] .nextActor(ring[i + 1]);
10. } }

11. } // finish

-
N

. ring[numThreads-1] .nextActor(ring[0]);
13. ring[0] . send (numberOfHops) ;

Deadlock: the end-finish operation in line 11 waits for all the actors
created in line 7 to terminate, but the actors are waiting for the message
sequence initiated in line 13 before they call exit()

3 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Acknowledgments for Today’s Lecture

* Maurice Herlihy and Nir Shavit. The art of multiprocessor
programming. Morgan Kaufmann, 2008.

—Optional text for COMP 322

—Chapter 3 slides extracted from http://www.elsevierdirect.com/
companion. jsp?ISBN=9780123705914

- Lecture on "Linearizability” by Mila Oren
—http://www.cs.tau.ac.il/~afek/Mila.Linearizability.ppt

4 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline

* Linearizability of Concurrent Executions and
Concurrent Objects

« Liveness/progress guarantees

« Optimized Implementations of Isolated

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Concurrent Objects

« A concurrent object is an object that can correctly handle
methods invoked in parallel by different tasks or threads
—Originated as monitors
— Also referred to as "thread-safe objects”

« For simplicity, it is usually assumed that the body of each
method in a concurrent object is itself sequential

— Assume that method does not create child async tasks

« Implementations of methods can be serial as in monitors (e.qg.,
enclose each method in an object-based isolated statement) or
concurrent (e.g., ConcurrentHashMap, ConcurrentlLinkedQueue
and CopyOnWriteArraySet)

« A desirable goal is to develop implementations that are
concurrent while being as close to the semantics of the serial
version as possible

6 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Canonical Example of a
Concurrent Object

Consider a simple FIFO (First In, First Out) queue as a
canonical example of a concurrent object

—Method q.enq(o) inserts object o at the tail of the queue

- Assume that there is unbounded space available for all
enq() operations to succeed

—Method q.deq() removes and returns the item at the head of
the queue.

- Throws EmptyException if the queue is empty.

What does it mean for a concurrent object like a FIFO
queue to be correct?

—What is a concurrent FIFO queue?
—FIFO means strict temporal order
— Concurrent means ambiguous temporal order

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Describing the concurrent via the sequential

q.deq

isglated-begin() isolated-end()

‘de

i q.enq i i

isolated-begin()*" ' isolatedrend() (sorovion o
"Sequential”
J

eng deq .

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

8 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Informal definition of Linearizability

 Assume that each method call takes effect
“instantaneously” at some distinct point in time
between its invocation and return.

* An execution is linearizable if we can choose
instantaneous points that are consistent with a
sequential execution in which methods are executed
at those points

« A concurrent object is linearizable if all its
executions are linearizable.

9 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 1

[plele__

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

10 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 1 (contd)

[plele__

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

11 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 1 (contd)

[plele__

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

12 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 1 (contd)

[plele__

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

13 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 1 (contd)

-

[plele__

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

14 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 1 (contd)

q.en(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

15 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 2

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

16

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 3

Is this execution linearizable? How many possible linearizations
does it have?

)

“®

17 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 4: execution of a monitor-based
implementation of FIFO queue g

Is this a linearizable execution?

Time || Task A Task B
Invoke q.enq(x)
Work on g.enq(x)
Work on q.enq(x)
Return from q.enq(x)

Invoke q.enq(y)

Work on q.enq(y)
Work on q.enq(y)
Return from q.enq(y)
Invoke q.deq()

Return x from q.deq()

© 00O Ut W N —=O

Yes! Equivalent to “"q.enq(x) : q.enq(y) . q.deq():x"

18 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 5: Example execution of method
calls on a concurrent FIFO queue q

Is this a linearizable execution?

Time || Task A Task B
0 Invoke q.enq(x)
1 Work on q.enq(x) Invoke q.enq(y)
2 Work on q.enq(x) Return from q.enq(y)
3 Return from q.enq(x)
4 Invoke q.deq()
5 Return x from q.deq()

Yes! Equivalent to “"q.enq(x) : q.enq(y) : q.deq():x"

19

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 5: Example execution of method
calls on a concurrent FIFO queue q

Is this a linearizable execution?

Time || Task A Task B
0 Invoke g.enq(x)
1 Work on q.enq(x) Invoke g.enq(y)
2 Work on q.enq(x) Return from q.enq(y)
3 Return from q.enq(x)
4 Invoke q.deq()
5 Return x from q.deq()

Yes! Equivalent to “"q.enq(x) : q.enq(y) : q.deq():x"

20

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 6: yet another execution on a
concurrent FIFO queue ¢

Is this a linearizable execution?

Time | Task A Task B
0 Invoke q.enq(x)
1 Return from q.enq(x)
2 Invoke q.enq(y)
3 Invoke q.deq() Work on q.enq(y)
4 Work on q.deq() Return from q.enq(y)
5 Return y from q.deq()

) .

Let's figure it out in Worksheet 10!
- J

21 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Linearizability of Concurrent Objects
(Summary)

Concurrent object

A concurrent object is an object that can correctly handle
methods invoked in parallel bylin different tasks or threads

—Examples: concurrent queue, AtomicInteger

Linearizability

22

Assume that each method call takes effect “instantaneously” at
some distinct point in time between its invocation and return.

An execution is linearizable if we can choose instantaneous
points that are consistent with a sequential execution in which
methods are executed at those points

An object is linearizable if all its possible executions are
linearizable

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline

* Linearizability of Concurrent Executions and
Concurrent Objects

« Liveness/progress guarantees

« Optimized Implementations of Isolated

23 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Safety vs. Liveness

In a concurrent setting, we need to specify both the safety

and the liveness properties of an object

Need a way to define
—Safety: when an implementation is correct
—Liveness: the conditions under which it guarantees progress

Data race freedom is a desirable safety property for most

parallel programs

Linearizability is a desirable safety property for most
concurrent objects

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

24

Liveness Guarantees

 Liveness = a program's ability to make progress in a
timely manner

« Different levels of liveness guarantees (from weaker
to stronger)

—Deadlock freedom
—Livelock freedom
—Starvation freedom
—Bounded wait

25 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Deadlock-Free Parallel Program Executions

* A parallel program execution is deadlock-free if no task's execution remains
incomplete due to it being blocked awaiting some condition

« Example of a program with a deadlocking execution
DataDrivenFuture left = new DataDrivenFuture();
DataDrivenFuture right = new DataDrivenFuture():
finish {

async await (left) right.put(rightBuilder()); // Taskl
async await (right) left.put(leftBuilder()): // Task2
}

« In this case, Taskl and Task2 are in a deadlock cycle.

- Only two constructs can lead to deadlock in HJ: async await, finish +
actors, explicit phaser wait (instead of next)

— There are many mechanisms that can lead to deadlock cycles in other
programming models (e.g., locks)

26 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Livelock-Free Parallel Program Executions

* A parallel program execution exhibits livelock if two or more tasks
repeat the same interactions without making any progress (special case
of nontermination)

 Livelock example:
/7 Task 1 // Task 2

incrToTwo(AtomicInteger ai) {
// increment ai till it reaches 2
while (ai.incrementAndGet() < 2):

}

* Many well-intended approaches to avoid deadlock result in livelock
instead

decrToNegativeTwo(AtomicInteger ai) {
// decrement ai till it reaches -2
while (a.decrementAndGet() > -2);

}

* Any data-race-free HJ program without isolated/atomic-variables/
actors is guaranteed to be livelock-free (may be nonterminating in a
single task, however)

27 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Terminating Parallel Program Executions

A parallel program execution is terminating if all sequential tasks in the program
terminate

Example of a nondeterministic data-race-free program with a nonterminating
execution

p.x = false:
finish {
async { // S1
boolean b = false; do { isolated b = p.x; } while (! b):
}
isolated p.x = true; // S2
} // finish

Some executions of this program may be terminating, and some not

Cannot assume in general that statement S2 will ever get a chance to execute if
async S1 is nonterminating e.g., consider case when program is run with one worker
(-places 1:1)

28

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Starvation-Free Parallel Program
Executions

« A parallel program execution exhibits starvation if some task is
repeatedly denied the opportunity to make progress

— Starvation-freedom is sometimes referred to as "“lock-out freedom”

— Starvation is possible in HJ programs, since all tasks in the same
program are assumed to be cooperating, rather than competing

- If starvation occurs in a deadlock-free HJ program, the
“equivalent” sequential program must be non-terminating

 Classic source of starvation: "Priority Inversion” problem for OS
threads

—Thread A is at high priority, waiting for result or resource from
Thread C at low priority

—Thread B at intermediate priority is CPU-bound
—Thread C never runs, hence thread A never runs

—Fix: when a high priority thread waits for a low priority thread,
boost the priority of the low-priority thread

29 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Bounded Wait

« A parallel program execution exhibits bounded wait if each task
requesting a resource should only have to wait for a bounded
number of other tasks to "cut in line” i.e., to gain access to the
resource after its request has been registered.

« If bound = O, then the program execution is fair

30 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Progress

ell, Did you
see anybody
go in?

Are there doo
locks?

* Progress? Bounded Wait?

What's the difference?

32 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

33

* Progress?

—If no process is
waiting for a
resource and several
processes are
requesting access to
the resource, then
access to the
resource cannot be
postponed
indefinitely

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

—A process
requesting access
to a resource
should only have to
wait for a bounded
number of other
processes to access
the resource that
requested access
after it

® -4 |
- - ..—
P

- €S 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Related Concepts: Progress Condition

« A resource is said to be obstruction-free if it is deadlock-free

« A resource is said to be lock-free if it is livelock-free and
deadlock-free

« A resource is said to be wait-free if it is starvation-free,
livelock-free, and deadlock-free

35 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example: Implementing Atomiclnteger.getAndAdd()
using compareAndSet()

/** Atomically adds delta to the current value.

1. *

2. * @param delta the value to add

3. * @return the previous value

4. */

5. public final int getAndAdd(int delta) {
6. for (;;) { // try

7. int current = get();

8. int next = current + delta;

9. if (compareAndSet(current, next))
10. // commit

11. return current;

12. }

13. }

Is this implementation of getAndAdd() obstruction-free, lock-free or wait-
free?

« Source: http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/
atomic/AtomicInteger.java

36 COMP 322, Spring 2012 (V.Sarkar) %ﬁ

Outline
* Linearizability of Concurrent Executions and

Concurrent Objects

« Liveness/progress guarantees

e Optimized Implementations of Isolated

37 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Research Idea 1: Transactional Memory

Execution of an isolated statement is treated as a transaction

— In database systems, a transaction refers to a “unit of work” that has
"all-or-nothing” semantics. Each unit of work must either complete in its
entirety or have no visible effect.

A TM system logs all read and write operations performed in a
transaction and optimistically permits transactions to run in parallel,
speculating that there won't be interference

At the end of a transaction, a TM system checks if interference
occurred with another transaction

— If not, the transaction can be committed
— If so, the transaction fails and has to be “retried”

Both software and hardware implementations of TM have been
explored extensively by the research community, but no
implementation has proved suitable for mainstream use as yet

Examples of Software TM system for Java: DSTM2, Deuce

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Research Idea 2: Delegated Isolation

Challenge: scalable implementation of isolated without using a single
global lock and without incurring transactional memory overheads

Delegated isolation:
—Restrict attention to “"async isolated” case
- replace non-async "“isolated” by “finish async isolated”

— Task dynamically acquires ownership of each object accessed in
isolated block (optimistic parallelism)

- Similar to transactional memory

—On conflict, task A transfers all ownerships to worker executing
conflicting task B and delegates execution of isolated block to B

- Different from transactional memory
— Deadlock-freedom and livelock-freedom guarantees

—Reference: "Delegated Isolation”, R. Lublinerman, J. Zhao, Z.
Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2011

39 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example Algorithm: Delaunay Mesh Refinement

* Input: a 2d triangle mesh that
satisfies:

the Delaunay property: no point is
contained in the circumcircle of a triangle

* Output: a 2d triangle mesh that
—satisfies the Delaunay property
—contains all points in the original mesh

—satisfies an extra quality constraint
- no triangle can have an angle < 25°

* Algorithm (Ruppert's algorithm)

—iteratively select a triangle that violates
the quality constraint and refine the mesh
around it.

34 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas) %

1:
2:
3:
4
5
6

O o~

10:

11:
12

13
14
15
16
17:
18:
19
20
21:

22:
19:
20:

41

Delauney Mesh Refinement in Habanero-Java
using Delegated Isolation

void doCavity(Triangle start) {
—(start isActive()) {
: Cavity ¢ = new Cavity(start);
: c.initialize(start);
: c.retriangulate();
// launch retriagnulation on new bad triangles.
: Iterator bad = c.getBad().iterator();
: while (bad.hasNext()) {
: final Triangle b = (Triangle)bad.next();
doCavity(b);
}

// if original bad triangle was NOT retriangulated, Before
// launch its retriangulation again
if (start.isActive())

: doCavity(start);
}
} // end isolated
}
: void main() {
: mesh = ... ; // Load from file
: initialBadTriangles = mesh.badTriangles();
: erator it = initialBadTriangles.iterator();
while (it.hasNext()) {
: final Triangle t = (Triangle) it.next();
: if (t.isBad())

Cavity.doCavity(t); After

} Figure source:
http://lcpc10.rice.edu/Keynote_Speakers_files/PingaliKeynote.pdf

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Performance: DMR benchmark on 16-core Xeon SMP
(100,770 initial triangles of which 47,768 are “bad”; average # retriangulations is ~ 130,000)

M e HJ (Coarse-Grained-Lock) —* — Java (Fine-Grained-Locks) 5632sz5/ qet:?erg]dance:

177s w/ 16 threads

—&— HJ (Delegated Isolation)

12 -

=
o
1

time in seconds

HJ (SEQ)

O 1 1 1 1 1 1 1 1 i # threads

42 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #10 (to be done individually or in pairs):
Linearizability of method calls on a concurrent object

Name 1: Name 2:

Is this a linearizable execution?

Time || Task A Task B
0 Invoke q.enq(x)

1 Return from q.enq(x)

2 Invoke q.enq(y)

3 Invoke q.deq() Work on q.enq(y)

4 Work on q.deq() Return from q.enq(y)
5!

Return y from q.deq()

43 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

