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Recap of Lecture 9
Monitors:
• A monitor is a passive object containing local variables 

(private data) and methods that operate on local data 
(monitor regions) 

• Only one task can be active in a monitor at a time, 
executing some monitor region

Actors:
• An actor has mutable local state, a process() method to 

manipulate local state, and a thread of control to 
process incoming messages

• An actor may process messages, send messages, change 
local state, and create new actors
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Worksheet #9 solution: 
Interaction between finish and actors
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What would happen if the end-finish operation from slide 29 was 
moved from line 13 to line 11 as shown below? 

1. finish {
2.   int numThreads = 4;
3.   int numberOfHops = 10;
4.   ThreadRingActor[] ring = new ThreadRingActor[numThreads];
5.   for(int i=numThreads-1;i>=0; i--) {
6.     ring[i] = new ThreadRingActor(i);
7.     ring[i].start();
8.     if (i < numThreads - 1) {
9.       ring[i].nextActor(ring[i + 1]);
10.   } }
11.  } // finish
12. ring[numThreads-1].nextActor(ring[0]);
13. ring[0].send(numberOfHops);

Deadlock: the end-finish operation in line 11 waits for all the actors 
created in line 7 to terminate, but the actors are waiting for the message 
sequence initiated in line 13 before they call exit()
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Acknowledgments for Today’s Lecture
• Maurice Herlihy and Nir Shavit. The art of multiprocessor 

programming. Morgan Kaufmann, 2008.
—Optional text for COMP 322
—Chapter 3 slides extracted from http://www.elsevierdirect.com/

companion.jsp?ISBN=9780123705914

• Lecture on “Linearizability” by Mila Oren
—http://www.cs.tau.ac.il/~afek/Mila.Linearizability.ppt 
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Outline

• Linearizability of Concurrent Executions and 
Concurrent Objects

• Liveness/progress guarantees

• Optimized Implementations of Isolated
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Concurrent Objects
• A concurrent object is an object that can correctly handle 

methods invoked in parallel by different tasks or threads
—Originated as monitors
—Also referred to as “thread-safe objects”

• For simplicity, it is usually assumed that the body of each 
method in a concurrent object is itself sequential
—Assume that method does not create child async tasks

• Implementations of methods can be serial as in monitors (e.g., 
enclose each method in an object-based isolated statement) or 
concurrent (e.g., ConcurrentHashMap, ConcurrentLinkedQueue 
and CopyOnWriteArraySet)

• A desirable goal is to develop implementations that are 
concurrent while being as close to the semantics of the serial 
version as possible  
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Canonical Example of a 
Concurrent Object

• Consider a simple FIFO (First In, First Out) queue as a 
canonical example of a concurrent object
—Method q.enq(o) inserts object o at the tail of the queue

– Assume that there is unbounded space available for all 
enq() operations to succeed

—Method q.deq() removes and returns the item at the head of 
the queue. 
– Throws EmptyException if the queue is empty. 

• What does it mean for a concurrent object like a FIFO 
queue to be correct?
—What is a concurrent FIFO queue?
—FIFO means strict temporal order
—Concurrent means ambiguous temporal order
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Describing the concurrent via the sequential 

time

q.deq

q.enq

 enq  deq

   isolated-begin() isolated-end()

isolated-begin() isolated-end()
Behavior is 
“Sequential”

enq

deq

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Informal definition of Linearizability

• Assume that each method call takes effect 
“instantaneously” at some distinct point in time 
between its invocation and return.

• An execution is linearizable if we can choose 
instantaneous points that are consistent with a 
sequential execution in which methods are executed 
at those points

• A concurrent object is linearizable if all its 
executions are linearizable.
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Example 1

timetime

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example 1 (contd)

time

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example 1 (contd)

time

q.enq(x)

q.enq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

linearizable
q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example 2

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

not linearizable

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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q.enq(x)

q.enq(y)

q.deq():y

q.deq():x

time

Example 3
Is this execution linearizable?  How many possible linearizations 
does it have?

17



CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 4: execution of a monitor-based 
implementation of FIFO queue q

Is this a linearizable execution?

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”
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Example 5: Example execution of method 
calls on a concurrent FIFO queue q

Is this a linearizable execution?

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”
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Example 5: Example execution of method 
calls on a concurrent FIFO queue q

Is this a linearizable execution?

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”
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Example 6: yet another execution on a 
concurrent FIFO queue q

Is this a linearizable execution?
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Let’s figure it out in Worksheet 10!



CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Linearizability of Concurrent Objects 
(Summary)

Concurrent object

• A concurrent object is an object that can correctly handle 
methods invoked in parallel bylin different tasks or threads
—Examples: concurrent queue, AtomicInteger

Linearizability

• Assume that each method call takes effect “instantaneously” at 
some distinct point in time between its invocation and return.

• An execution is linearizable if we can choose instantaneous 
points that are consistent with a sequential execution in which 
methods are executed at those points

• An object is linearizable if all its possible executions are 
linearizable
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Outline

• Linearizability of Concurrent Executions and 
Concurrent Objects

• Liveness/progress guarantees

• Optimized Implementations of Isolated
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Safety vs. Liveness

• In a concurrent setting, we need to specify both the safety 
and the liveness properties of an object

• Need a way to define 
—Safety: when an implementation is correct
—Liveness: the conditions under which it guarantees progress

• Data race freedom is a desirable safety property for most 
parallel programs

• Linearizability is a desirable safety property for most 
concurrent objects
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Liveness Guarantees

• Liveness = a program’s ability to make progress in a 
timely manner

• Different levels of liveness guarantees (from weaker 
to stronger)
—Deadlock freedom
—Livelock freedom
—Starvation freedom
—Bounded wait
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Deadlock-Free Parallel Program Executions
• A parallel program execution is deadlock-free if no task’s execution remains 

incomplete due to it being blocked awaiting some condition

• Example of a program with a deadlocking execution

 DataDrivenFuture left = new DataDrivenFuture();

 DataDrivenFuture right = new DataDrivenFuture();

 finish {

   async await ( left ) right.put(rightBuilder()); // Task1

      async await ( right ) left.put(leftBuilder()); // Task2

 }

• In this case, Task1 and Task2 are in a deadlock cycle.  
– Only two constructs can lead to deadlock in HJ: async await, finish + 

actors, explicit phaser wait (instead of next)

—There are many mechanisms that can lead to deadlock cycles in other 
programming models (e.g., locks) 
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Livelock-Free Parallel Program Executions
• A parallel program execution exhibits livelock if two or more tasks 

repeat the same interactions without making any progress (special case 
of nontermination)

• Livelock example: 
// Task 1
incrToTwo(AtomicInteger ai) {
  // increment ai till it reaches 2  
  while (ai.incrementAndGet() < 2);
}

• Many well-intended approaches to avoid deadlock result in livelock 
instead

• Any data-race-free HJ program without isolated/atomic-variables/
actors is guaranteed to be livelock-free (may be nonterminating in a 
single task, however)

// Task 2
decrToNegativeTwo(AtomicInteger ai) {
  // decrement ai till it reaches -2 
  while (a.decrementAndGet() > -2);
}

27



CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Terminating Parallel Program Executions
• A parallel program execution is terminating if all sequential tasks in the program 

terminate

• Example of a nondeterministic data-race-free program with a nonterminating 
execution

1.  p.x = false;

2.  finish {

3.    async { // S1

4.       boolean b = false; do { isolated b = p.x; } while (! b);

5.      }

6.    isolated p.x = true; // S2

7.  } // finish

• Some executions of this program may be terminating, and some not

• Cannot assume in general that statement S2 will ever get a chance to execute if 
async S1 is nonterminating e.g., consider case when program is run with one worker 
(-places 1:1)
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Starvation-Free Parallel Program 
Executions

• A parallel program execution exhibits starvation if some task is 
repeatedly denied the opportunity to make progress
—Starvation-freedom is sometimes referred to as “lock-out freedom”
—Starvation is possible in HJ programs, since all tasks in the same 

program are assumed to be cooperating, rather than competing
– If starvation occurs in a deadlock-free HJ program, the 

“equivalent” sequential program must be non-terminating 

• Classic source of starvation: “Priority Inversion” problem for OS 
threads
—Thread A is at high priority, waiting for result or resource from 

Thread C at low priority
—Thread B at intermediate priority is CPU-bound
—Thread C never runs, hence thread A never runs
—Fix: when a high priority thread waits for a low priority thread, 

boost the priority of the low-priority thread
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Bounded Wait
• A parallel program execution exhibits bounded wait if each task 

requesting a resource should only have to wait for a bounded 
number of other tasks to “cut in line” i.e., to gain access to the 
resource after its request has been registered.

• If bound = 0, then the program execution is fair
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ProgressMutual ExclusionBounded Wait

Oversimplifying Assumptions

Are there door 
locks?No cutting in!

Well, Did you 
see anybody 

go in?
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• Progress? • Bounded Wait?

What's the difference?
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• Progress?
—If no process is 
waiting for a 
resource and several 
processes are 
requesting access to 
the resource, then 
access to the 
resource cannot be 
postponed 
indefinitely
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• Progress?
—If no process is 
waiting in its critical 
section and several 
processes are trying 
to get into their 
critical section, then 
entry to the critical 
section cannot be 
postponed 
indefinitely

• Bounded Wait?
—A process 
requesting access 
to a resource 
should only have to 
wait for a bounded 
number of other 
processes to access 
the resource that 
requested access 
after it
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Related Concepts: Progress Condition
• A resource is said to be obstruction-free if it is deadlock-free

• A resource is said to be lock-free if it is livelock-free and 
deadlock-free

• A resource is said to be wait-free if it is starvation-free, 
livelock-free, and deadlock-free
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Example: Implementing AtomicInteger.getAndAdd() 
using compareAndSet()

  /** Atomically adds delta to the current value.
1.     *
2.     * @param delta the value to add
3.     * @return the previous value
4.     */
5.    public final int getAndAdd(int delta) {
6.        for (;;) { // try
7.            int current = get();
8.            int next = current + delta;
9.            if (compareAndSet(current, next))
10.                // commit
11.                return current;
12.        }
13.    }

Is this implementation of getAndAdd() obstruction-free, lock-free or wait-
free?

• Source: http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/
atomic/AtomicInteger.java
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Outline

• Linearizability of Concurrent Executions and 
Concurrent Objects

• Liveness/progress guarantees

• Optimized Implementations of Isolated
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• Execution of an isolated statement is treated as a transaction
—In database systems, a transaction refers to a “unit of work” that has 

“all-or-nothing” semantics.  Each unit of work must either complete in its 
entirety or have no visible effect. 

• A TM system logs all read and write operations performed in a 
transaction and optimistically permits transactions to run in parallel, 
speculating that there won’t be interference

• At the end of a transaction, a TM system checks if interference 
occurred with another transaction
—If not, the transaction can be committed
— If so, the transaction fails and has to be “retried”

• Both software and hardware implementations of TM have been 
explored extensively by the research community, but no 
implementation has proved suitable for mainstream use as yet

• Examples of Software TM system for Java: DSTM2, Deuce

Research Idea 1: Transactional Memory 
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Research Idea 2: Delegated Isolation

• Challenge: scalable implementation of isolated without using a single 
global lock and without incurring transactional memory overheads

• Delegated isolation:
—Restrict attention to “async isolated” case

– replace non-async “isolated” by “finish async isolated”
—Task dynamically acquires ownership of each object accessed in 

isolated block (optimistic parallelism)
– Similar to transactional memory

—On conflict, task A transfers all ownerships to worker executing 
conflicting task B and delegates execution of isolated block to B
– Different from transactional memory

—Deadlock-freedom and livelock-freedom guarantees

—Reference: “Delegated Isolation”, R. Lublinerman, J. Zhao, Z. 
Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2011
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Example Algorithm: Delaunay Mesh Refinement

• Input: a 2d triangle mesh that 
satisfies:
 the Delaunay property: no point is 
contained in the circumcircle of a triangle

• Output: a 2d triangle mesh that
—satisfies the Delaunay property
—contains all points in the original mesh
—satisfies an extra quality constraint

– no triangle can have an angle  < 25°

• Algorithm (Ruppert’s algorithm)
—iteratively select a triangle that violates 
the quality constraint and refine the mesh 
around it. 
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Delauney Mesh Refinement in Habanero-Java
using Delegated Isolation

Figure source: 
http://lcpc10.rice.edu/Keynote_Speakers_files/PingaliKeynote.pdf
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Performance: DMR benchmark on 16-core Xeon SMP
(100,770 initial triangles of which 47,768 are “bad”; average # retriangulations is ~ 130,000) 
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DSTM2 performance: 
962s w/ 1 thread    
177s w/ 16 threads  
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Worksheet #10 (to be done individually or in pairs): 
Linearizability of method calls on a concurrent object
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Name 1: ___________________          Name 2: ___________________

Is this a linearizable execution?


