
CS 181E: Fundamentals of
Parallel Programming

Instructor: Vivek Sarkar
Co-Instructor: Ran Libeskind-Hadas

http://www.cs.hmc.edu/courses/2012/fall/cs181e/

CS 181E Lecture 10 8 October 2012

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Recap of Lecture 9
Monitors:
• A monitor is a passive object containing local variables

(private data) and methods that operate on local data
(monitor regions)

• Only one task can be active in a monitor at a time,
executing some monitor region

Actors:
• An actor has mutable local state, a process() method to

manipulate local state, and a thread of control to
process incoming messages

• An actor may process messages, send messages, change
local state, and create new actors

2

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #9 solution:
Interaction between finish and actors

3

What would happen if the end-finish operation from slide 29 was
moved from line 13 to line 11 as shown below?

1. finish {
2. int numThreads = 4;
3. int numberOfHops = 10;
4. ThreadRingActor[] ring = new ThreadRingActor[numThreads];
5. for(int i=numThreads-1;i>=0; i--) {
6. ring[i] = new ThreadRingActor(i);
7. ring[i].start();
8. if (i < numThreads - 1) {
9. ring[i].nextActor(ring[i + 1]);
10. } }
11. } // finish
12. ring[numThreads-1].nextActor(ring[0]);
13. ring[0].send(numberOfHops);

Deadlock: the end-finish operation in line 11 waits for all the actors
created in line 7 to terminate, but the actors are waiting for the message
sequence initiated in line 13 before they call exit()

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Acknowledgments for Today’s Lecture
• Maurice Herlihy and Nir Shavit. The art of multiprocessor

programming. Morgan Kaufmann, 2008.
—Optional text for COMP 322
—Chapter 3 slides extracted from http://www.elsevierdirect.com/

companion.jsp?ISBN=9780123705914

• Lecture on “Linearizability” by Mila Oren
—http://www.cs.tau.ac.il/~afek/Mila.Linearizability.ppt

4

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline

• Linearizability of Concurrent Executions and
Concurrent Objects

• Liveness/progress guarantees

• Optimized Implementations of Isolated

5

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Concurrent Objects
• A concurrent object is an object that can correctly handle

methods invoked in parallel by different tasks or threads
—Originated as monitors
—Also referred to as “thread-safe objects”

• For simplicity, it is usually assumed that the body of each
method in a concurrent object is itself sequential
—Assume that method does not create child async tasks

• Implementations of methods can be serial as in monitors (e.g.,
enclose each method in an object-based isolated statement) or
concurrent (e.g., ConcurrentHashMap, ConcurrentLinkedQueue
and CopyOnWriteArraySet)

• A desirable goal is to develop implementations that are
concurrent while being as close to the semantics of the serial
version as possible

6

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Canonical Example of a
Concurrent Object

• Consider a simple FIFO (First In, First Out) queue as a
canonical example of a concurrent object
—Method q.enq(o) inserts object o at the tail of the queue

– Assume that there is unbounded space available for all
enq() operations to succeed

—Method q.deq() removes and returns the item at the head of
the queue.
– Throws EmptyException if the queue is empty.

• What does it mean for a concurrent object like a FIFO
queue to be correct?
—What is a concurrent FIFO queue?
—FIFO means strict temporal order
—Concurrent means ambiguous temporal order

7

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Describing the concurrent via the sequential

time

q.deq

q.enq

 enq deq

 isolated-begin() isolated-end()

isolated-begin() isolated-end()
Behavior is
“Sequential”

enq

deq

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

8

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Informal definition of Linearizability

• Assume that each method call takes effect
“instantaneously” at some distinct point in time
between its invocation and return.

• An execution is linearizable if we can choose
instantaneous points that are consistent with a
sequential execution in which methods are executed
at those points

• A concurrent object is linearizable if all its
executions are linearizable.

9

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 1

timetime

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

10

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 1 (contd)

time

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

11

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 1 (contd)

time

q.enq(x)

q.enq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

12

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

13

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

14

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 1 (contd)

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

linearizable
q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

15

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

not linearizable

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

16

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

q.enq(x)

q.enq(y)

q.deq():y

q.deq():x

time

Example 3
Is this execution linearizable? How many possible linearizations
does it have?

17

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 4: execution of a monitor-based
implementation of FIFO queue q

Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

18

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 5: Example execution of method
calls on a concurrent FIFO queue q

Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

19

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 5: Example execution of method
calls on a concurrent FIFO queue q

Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

20

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 6: yet another execution on a
concurrent FIFO queue q

Is this a linearizable execution?

21

Let’s figure it out in Worksheet 10!

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Linearizability of Concurrent Objects
(Summary)

Concurrent object

• A concurrent object is an object that can correctly handle
methods invoked in parallel bylin different tasks or threads
—Examples: concurrent queue, AtomicInteger

Linearizability

• Assume that each method call takes effect “instantaneously” at
some distinct point in time between its invocation and return.

• An execution is linearizable if we can choose instantaneous
points that are consistent with a sequential execution in which
methods are executed at those points

• An object is linearizable if all its possible executions are
linearizable

22

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline

• Linearizability of Concurrent Executions and
Concurrent Objects

• Liveness/progress guarantees

• Optimized Implementations of Isolated

23

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Safety vs. Liveness

• In a concurrent setting, we need to specify both the safety
and the liveness properties of an object

• Need a way to define
—Safety: when an implementation is correct
—Liveness: the conditions under which it guarantees progress

• Data race freedom is a desirable safety property for most
parallel programs

• Linearizability is a desirable safety property for most
concurrent objects

24

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Liveness Guarantees

• Liveness = a program’s ability to make progress in a
timely manner

• Different levels of liveness guarantees (from weaker
to stronger)
—Deadlock freedom
—Livelock freedom
—Starvation freedom
—Bounded wait

25

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Deadlock-Free Parallel Program Executions
• A parallel program execution is deadlock-free if no task’s execution remains

incomplete due to it being blocked awaiting some condition

• Example of a program with a deadlocking execution

 DataDrivenFuture left = new DataDrivenFuture();

 DataDrivenFuture right = new DataDrivenFuture();

 finish {

 async await (left) right.put(rightBuilder()); // Task1

 async await (right) left.put(leftBuilder()); // Task2

 }

• In this case, Task1 and Task2 are in a deadlock cycle.
– Only two constructs can lead to deadlock in HJ: async await, finish +

actors, explicit phaser wait (instead of next)

—There are many mechanisms that can lead to deadlock cycles in other
programming models (e.g., locks)

26

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Livelock-Free Parallel Program Executions
• A parallel program execution exhibits livelock if two or more tasks

repeat the same interactions without making any progress (special case
of nontermination)

• Livelock example:
// Task 1
incrToTwo(AtomicInteger ai) {
 // increment ai till it reaches 2
 while (ai.incrementAndGet() < 2);
}

• Many well-intended approaches to avoid deadlock result in livelock
instead

• Any data-race-free HJ program without isolated/atomic-variables/
actors is guaranteed to be livelock-free (may be nonterminating in a
single task, however)

// Task 2
decrToNegativeTwo(AtomicInteger ai) {
 // decrement ai till it reaches -2
 while (a.decrementAndGet() > -2);
}

27

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Terminating Parallel Program Executions
• A parallel program execution is terminating if all sequential tasks in the program

terminate

• Example of a nondeterministic data-race-free program with a nonterminating
execution

1. p.x = false;

2. finish {

3. async { // S1

4. boolean b = false; do { isolated b = p.x; } while (! b);

5. }

6. isolated p.x = true; // S2

7. } // finish

• Some executions of this program may be terminating, and some not

• Cannot assume in general that statement S2 will ever get a chance to execute if
async S1 is nonterminating e.g., consider case when program is run with one worker
(-places 1:1)

28

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Starvation-Free Parallel Program
Executions

• A parallel program execution exhibits starvation if some task is
repeatedly denied the opportunity to make progress
—Starvation-freedom is sometimes referred to as “lock-out freedom”
—Starvation is possible in HJ programs, since all tasks in the same

program are assumed to be cooperating, rather than competing
– If starvation occurs in a deadlock-free HJ program, the

“equivalent” sequential program must be non-terminating

• Classic source of starvation: “Priority Inversion” problem for OS
threads
—Thread A is at high priority, waiting for result or resource from

Thread C at low priority
—Thread B at intermediate priority is CPU-bound
—Thread C never runs, hence thread A never runs
—Fix: when a high priority thread waits for a low priority thread,

boost the priority of the low-priority thread

29

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Bounded Wait
• A parallel program execution exhibits bounded wait if each task

requesting a resource should only have to wait for a bounded
number of other tasks to “cut in line” i.e., to gain access to the
resource after its request has been registered.

• If bound = 0, then the program execution is fair

30

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)31

ProgressMutual ExclusionBounded Wait

Oversimplifying Assumptions

Are there door
locks?No cutting in!

Well, Did you
see anybody

go in?

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)32

• Progress? • Bounded Wait?

What's the difference?

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)33

• Progress?
—If no process is
waiting for a
resource and several
processes are
requesting access to
the resource, then
access to the
resource cannot be
postponed
indefinitely

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)34

• Progress?
—If no process is
waiting in its critical
section and several
processes are trying
to get into their
critical section, then
entry to the critical
section cannot be
postponed
indefinitely

• Bounded Wait?
—A process
requesting access
to a resource
should only have to
wait for a bounded
number of other
processes to access
the resource that
requested access
after it

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Related Concepts: Progress Condition
• A resource is said to be obstruction-free if it is deadlock-free

• A resource is said to be lock-free if it is livelock-free and
deadlock-free

• A resource is said to be wait-free if it is starvation-free,
livelock-free, and deadlock-free

35

COMP 322, Spring 2012 (V.Sarkar)

Example: Implementing AtomicInteger.getAndAdd()
using compareAndSet()

 /** Atomically adds delta to the current value.
1. *
2. * @param delta the value to add
3. * @return the previous value
4. */
5. public final int getAndAdd(int delta) {
6. for (;;) { // try
7. int current = get();
8. int next = current + delta;
9. if (compareAndSet(current, next))
10. // commit
11. return current;
12. }
13. }

Is this implementation of getAndAdd() obstruction-free, lock-free or wait-
free?

• Source: http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/
atomic/AtomicInteger.java

36

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline

• Linearizability of Concurrent Executions and
Concurrent Objects

• Liveness/progress guarantees

• Optimized Implementations of Isolated

37

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

• Execution of an isolated statement is treated as a transaction
—In database systems, a transaction refers to a “unit of work” that has

“all-or-nothing” semantics. Each unit of work must either complete in its
entirety or have no visible effect.

• A TM system logs all read and write operations performed in a
transaction and optimistically permits transactions to run in parallel,
speculating that there won’t be interference

• At the end of a transaction, a TM system checks if interference
occurred with another transaction
—If not, the transaction can be committed
— If so, the transaction fails and has to be “retried”

• Both software and hardware implementations of TM have been
explored extensively by the research community, but no
implementation has proved suitable for mainstream use as yet

• Examples of Software TM system for Java: DSTM2, Deuce

Research Idea 1: Transactional Memory

38

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)39

Research Idea 2: Delegated Isolation

• Challenge: scalable implementation of isolated without using a single
global lock and without incurring transactional memory overheads

• Delegated isolation:
—Restrict attention to “async isolated” case

– replace non-async “isolated” by “finish async isolated”
—Task dynamically acquires ownership of each object accessed in

isolated block (optimistic parallelism)
– Similar to transactional memory

—On conflict, task A transfers all ownerships to worker executing
conflicting task B and delegates execution of isolated block to B
– Different from transactional memory

—Deadlock-freedom and livelock-freedom guarantees

—Reference: “Delegated Isolation”, R. Lublinerman, J. Zhao, Z.
Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2011

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example Algorithm: Delaunay Mesh Refinement

• Input: a 2d triangle mesh that
satisfies:
 the Delaunay property: no point is
contained in the circumcircle of a triangle

• Output: a 2d triangle mesh that
—satisfies the Delaunay property
—contains all points in the original mesh
—satisfies an extra quality constraint

– no triangle can have an angle < 25°

• Algorithm (Ruppert’s algorithm)
—iteratively select a triangle that violates
the quality constraint and refine the mesh
around it.

34

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)41

Delauney Mesh Refinement in Habanero-Java
using Delegated Isolation

Figure source:
http://lcpc10.rice.edu/Keynote_Speakers_files/PingaliKeynote.pdf

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Performance: DMR benchmark on 16-core Xeon SMP
(100,770 initial triangles of which 47,768 are “bad”; average # retriangulations is ~ 130,000)

42

0"

2"

4"

6"

8"

10"

12"

14"

1" 2" 4" 6" 8" 10" 12" 14" 16"

(m
e"
in
"se

co
nd

s""

#"threads"

HJ"(Coarse:Grained:Lock)" Java"(Fine:Grained:Locks)"

HJ"(Delegated"Isola(on)"

HJ"(SEQ)"

DSTM2 performance:
962s w/ 1 thread
177s w/ 16 threads

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #10 (to be done individually or in pairs):
Linearizability of method calls on a concurrent object

43

Name 1: ___________________ Name 2: ___________________

Is this a linearizable execution?

