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Recap of Lecture 10

• Linearizability of Concurrent Executions and 
Concurrent Objects

• Liveness/progress guarantees

• Optimized Implementations of Isolated
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Worksheet #10 solution: 
Linearizability of method calls on a concurrent object

3

Is this a linearizable execution?

   No! q.enq(x) must precede q.enq(y) in all linear 
sequences of method calls invoked on q. It is 
illegal for the q.deq() operation to return y.
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Outline

• Task Affinity with Places

• Introduction to the Message Passing Interface (MPI)
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An example Memory Hierarchy --- what is 
the cost of a Memory Access? 
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Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx5
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Metric  1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB  8,000 880 100 30 1 0.1 0.06 130,000
access (ns)  375 200 100 70 60 50 40 9
typical size (MB)  0.064 0.256 4 16 64 2,000 8,000 125,000 

Storage Trends

DRAM

SRAM

Metric  1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB  500 100 8 0.30 0.01 0.005 0.0003 1,600,000
access (ms) 87 75 28 10 8 4 3 29
typical size (MB)  1 10 160 1,000 20,000 160,000 1,500,000 1,500,000

Disk

Metric  1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB  19,200 2,900 320 256 100 75 60 320
access (ns)  300 150 35 15 3 2 1.5 200

6 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Cache Memories
• Cache memories are small, fast SRAM-based memories managed 

automatically in hardware. 
—Hold frequently accessed blocks of main memory

• CPU looks first for data in caches (e.g., L1, L2, and L3), then 
in main memory.

• Typical system structure:

7 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Examples of Caching in the Hierarchy

Ultimate goal: create a large pool of storage with average cost 
per byte that approaches that of the cheap storage near the 
bottom of the hierarchy, and average latency that approaches 
that of  fast storage near the top of the hierarchy.

8 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

Ideally one would desire an indefinitely large memory 
capacity such that any particular … word would be immediately 

available. … We are … forced to recognize the possibility of constructing a 
hierarchy of memories, each of which has greater capacity than the preceding 
but which is less quickly accessible. 

A. W. Burks, H. H. Goldstine, and J. von Neumann 
Preliminary Discussion of the Logical Design of an 

Electronic Computing Instrument (1946)



CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Locality
• Principle of Locality: 

—Empirical observation: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently

• Temporal locality:  
— Recently referenced items are likely 

to be referenced again in the near future

• Spatial locality:  
— Items with nearby addresses tend 

to be referenced close together in time
— A Java programmer can only influence spatial locality at the intra-object level

– The garbage collector and memory management system determines inter-
object placement

9 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Locality Example

• Data references
—Reference array elements in succession 

(stride-1 reference pattern).
—Reference variable sum each iteration.

• Instruction references
—Reference instructions in sequence.
—Cycle through loop repeatedly. 

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spa0al	
  locality

Temporal	
  locality

Spa0al	
  locality
Temporal	
  locality

10 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Memory Hierarchy in a Multicore 
Processor

• Memory hierarchy for a single Intel Xeon Quad-core E5440 
HarperTown processor chip
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Programmer Control of Task Assignment to 
Processors

• The parallel programming constructs that we’ve 
studied thus far result in tasks that are assigned to 
processors dynamically by the HJ runtime system
—Programmer does not worry about task assignment details

• Sometimes, programmer control of task assignment 
can lead to significant performance advantages due 
to improved locality

• Motivation for HJ “places”
—Provide the programmer a mechanism to map each task to a 

set of processors when the task is created

12
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Places in HJ

HJ Places

Java Worker Threads

HJ programmer defines mapping from 
HJ tasks to set of places

HJ Tasks

HJ runtime defines mapping from places to one 
or more worker Java threads per place 

The option “-places p:w” when executing an HJ 
program can be used to specify
 p, the number of places
 w, the number of worker threads per place

OS threads

Processor Cores

13
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Example of –places 4:2 option on an 8-core 
node (4 places w/ 2 workers per place)
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Places in HJ
here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) =  place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”

<place-expr>.id returns the id of the place as an int

async at(P) S

• Creates new task to execute statement S at place P

• async S is equivalent to async at(here) S

• Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child 
task is executing, not the place where the parent task is executing

15
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Example of –places 4:2 option on an 8-core 
node (4 places w/ 2 workers per place)
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// Main program starts at place 0
async at(place.factory.place(0)) S1; 
async at(place.factory.place(0)) S2;

async at(place.factory.place(1)) S3; 
async at(place.factory.place(1)) S4;
async at(place.factory.place(1)) S5;

async at(place.factory.place(2)) S6;
async at(place.factory.place(2)) S7;
async at(place.factory.place(2)) S8;

async at(place.factory.place(3)) S9;
async at(place.factory.place(3)) S10;

16
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Example of –places 1:8 option
(1 place w/ 8 workers per place)

17
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All async’s run at place 0 when there’s only one place!
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Example HJ program with places

18
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Distributions --- hj.lang.dist
• A distribution maps points in a rectangular index space (region) to 

places e.g.,
—  i à place.factory.place(i % place.MAX_PLACES-1)

• Programmers are free to create any data structure they choose to 
store and compute these mappings

• For convenience, the HJ language provides a predefined type, 
hj.lang.dist, to simplify working with distributions

• Some public members available in an instance d of hj.lang.dist are:

—d.rank = number of dimensions in the input region for distribution d
—d.get(p) = place for point p mapped by distribution d. It is an error to 

call d.get(p) if p.rank != d.rank.
—d.places() = set of places in the range of distribution d
—d.restrictToRegion(pl) = region of points mapped to place pl by 

distribution d

19
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Block Distribution
• dist.factory.block([lo:hi]) creates a block distribution over the 

one-dimensional region, lo:hi.

• A block distribution splits the region into contiguous subregions, 
one per place, while trying to keep the subregions as close to 
equal in size as possible. 

• Block distributions can improve the performance of parallel loops 
that exhibit spatial locality across contiguous iterations.

• Example in Table 1: dist.factory.block([0:15]) for 4 places

20
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Block Distribution (contd)
• If the input region is multidimensional, then a block distribution 

is computed over the linearized one-dimensional version of the 
multidimensional region

• Example in Table 2: dist.factory.block([0:7,0:1]) for 4 places

21



CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Distributed Parallel Loops
• Listing 2 shows the typical pattern used to iterate over an input 

region r, while creating one async task for each iteration p at 
the place dictated by distribution d i.e., at place d.get(p). 

• This pattern works correctly regardless of the rank and 
contents of input region r and input distribution d i.e., it is not 
constrained to block distributions

22
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Cyclic Distribution
• dist.factory.cyclic([lo:hi]) creates a cyclic distribution over the 

one-dimensional region, lo:hi. 

• A cyclic distribution “cycles” through places 0 … place.MAX 
PLACES − 1 when spanning the input region

• Cyclic distributions can improve the performance of parallel 
loops that exhibit load imbalance

• Example in Table 3: dist.factory.cyclic([0:15]) for 4 places

• Example in Table 4: dist.factory.cyclic([0:7,0:1]) for 4 places

23
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Chunked Fork-Join Iterative 
Averaging Example with Places

1.  public void runDistChunkedForkJoin(int iterations, 
2.                                     int numChunks, dist d) {
3.    for (int iter = 0; iter < iterations; iter++) {
4.      finish for (point [jj] : [0:numChunks-1]) 
5.        async at(d.get(jj)) {
6.          for (point [j] : getChunk([1:n],numChunks,jj))
7.            myNew[j] = (myVal[j-1] + myVal[j+1]) / 2.0; 
8.      } // finish-for-async
9.      double[] temp = myNew; myNew = myVal; myVal = temp; 
10.   } // for iter
11. } // runDistChunkedForkJoin

•Chunk jj is always executed in the same place for each iteration, 
iter
•Method runDistChunkedForkJoin can be called with different values 
of distribution parameter d

24

Let’s try another example of a distributed parallel 
loop in Worksheet 11!
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Analyzing Locality of Fork-Join Iterative Averaging 
Example with Places

25
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Block-Cyclic Distribution
• dist.factory.blockCyclic([lo:hi],b) creates a block-cyclic 

distribution over the one-dimensional region, lo:hi. 

• A block-cyclic distribution combines the locality benefits of the 
block distribution with the load-balancing benefits of the cyclic 
distribution by introducing a block size parameter, b. 

• The linearized region is first decomposed into contiguous blocks 
of size b, and then the blocks are distributed in a cyclic manner 
across the places.

• Example in Table 5: dist.factory.blockCyclic([0:15],2) for 4 
place with block size b = 2

26
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Outline

• Task Affinity with Places

• Introduction to the Message Passing Interface (MPI)

27
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Organization of a Distributed-Memory 
Multiprocessor

Figure (a)

• Host node (Pc) connected to a cluster of processor nodes (P0 … Pm)

• Processors P0 … Pm communicate via a dedicated high-performance 
interconnection network (e.g., Infiniband)
—Supports much lower latencies and higher bandwidth than standard TCP/

IP networks

Figure (b)

• Each processor node consists of a processor, memory, and a Network 
Interface Card (NIC) connected to a router node (R) in the interconnect           

28
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Principles of 
Message-Passing Programming 

• The logical view of a machine supporting the message-passing 
paradigm consists of p processes, each with its own exclusive 
address space. 
1. Each data element must belong to one of the partitions of the 

space; hence, data must be explicitly partitioned and placed. 
2. All interactions (read-only or read/write) require cooperation of 

two processes - the process that has the data and the process 
that wants to access the data. 

• These two constraints, while onerous, make underlying costs 
very explicit to the programmer. 

• In this loosely synchronous model, processes synchronize 
infrequently to perform interactions. Between these 
interactions, they execute completely asynchronously. 

• Most message-passing programs are written using the single 
program multiple data (SPMD) model. 

29



CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

SPMD Pattern 
• SPMD: Single Program Multiple Data

• Run the same program on P processing elements (PEs)

• Use the “rank” … an ID ranging from 0 to (P-1) … to determine 
what computation is performed on what data by a given PE

• Different PEs can follow different paths through the same code 

• Convenient pattern for hardware platforms that are not 
amenable to efficient forms of dynamic task parallelism
—General-Purpose Graphics Processing Units (GPGPUs)
—Distributed-memory parallel machines

• Key design decisions --- how should data and computation be 
distributed across PEs?

30
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Using the SPMD model with a Global View of Data: 
Iterative Averaging (Slide 9, Lecture 13)

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2]; 

2. gVal[n+1] = 1; // Boundary condition

3. int Cj = Runtime.getNumOfWorkers();

4. forall (point [jj]:[0:Cj-1]) { // SPMD computation with “id” = jj

5.   double[] myVal = gVal; double[] myNew = gNew; // Local copy

6.   for (point [iter] : [0:numIters-1]) {

7.     // Compute MyNew as function of input array MyVal

8.     for (point [j]:getChunk([1:n],[Cj],[jj]))

9.        myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

10.    next; // Barrier before executing next iteration of iter loop

11.    // Swap myVal and myNew (replicated computation)

12.    double[] temp=myVal; myVal=myNew; myNew=temp;

13.    // myNew becomes input array for next iter

14.  } // for

15.} // forall

31
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Data Distribution: Local View in 
Distributed-Memory Systems

32
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Using the SPMD model with a Local View

Processors must communicate via messages for non-local data accesses

• Similar to communication constraint for actors (except that we allowed 
hybrid combinations of global task parallelism and local actor parallelism in 
HJ)

33



CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

MPI: The Message Passing Interface
• Sockets and Remote Method Invocation (RMI) are communication 

primitives used for distributed Java programs.
—Designed for standard TCP/IP networks rather than high-performance 

interconnects

• The Message Passing Interface (MPI) standard was designed to 
exploit high-performance interconnects
—MPI was standardized in the early 1990s by the MPI Forum—a 

substantial consortium of vendors and researchers
– http://www-unix.mcs.anl.gov/mpi 

—It is an API for communication between nodes of a distributed memory 
parallel computer

—The original standard defines bindings to C and Fortran (later C++)
– Java support is available from a research project, mpiJava, 

developed at Indiana University 10+ years ago
http://www.hpjava.org/mpiJava.html

34
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Features of MPI

• MPI is a platform for Single Program Multiple Data (SPMD) 
parallel computing on distributed memory architectures, with an 
API for sending and receiving messages

• It includes the abstraction of a “communicator”, which is like 
an N-way communication channel that connects a set of N 
cooperating processes (analogous to a phaser)

• It also includes explicit datatypes in the API, that are used to 
describe the contents of communication buffers.

35
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The Minimal Set of MPI Routines (mpiJava)

• MPI.Init(args)
—initialize MPI in each process

• MPI.Finalize()
—terminate MPI

• MPI.COMM_WORLD.Size()
—number of processes in COMM_WORLD communicator

• MPI.COMM_WORLD.Rank()
—rank of this process in COMM_WORLD communicator

• Note: 
—In this subset, processes act independently with no information 

communicated among the processes. 
—“embarrassingly parallel”, Cleve Moler.

36
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Our First MPI Program 
(mpiJava version)

1.import mpi.*;
2.class Hello {
3.    static public void main(String[] args) {
4.       // Init() be called before other MPI calls
5.       MPI.Init(args); /
6.       int npes = MPI.COMM_WORLD.Size() 
7.       int myrank = MPI.COMM_WORLD.Rank() ;
8.       System.out.println(”My process number is ” + myrank);
9.       MPI.Finalize(); // Shutdown and clean-up
10.    }
11.}

main() is enclosed in an 
implicit “forall” --- each 
process runs a separate 
instance of main() with 
“index variable” = myrank

37
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MPI Communicators
• Communicator is an internal object

—Communicator registration is like phaser registration, 
except that MPI does not support dynamic parallelism

• MPI programs are made up of communicating processes

• Each process has its own address space containing its 
own attributes such as rank, size (and argc, argv, etc.) 

• MPI provides functions to interact with it

• Default communicator is MPI.COMM_WORLD
—All processes are its members
—It has a size (the number of processes)
—Each process has a rank within it
—Can think of it as an ordered list of processes

• Additional communicator(s) can co-exist

• A process can belong to more than one communicator

• Within a communicator, each process has a unique rank

MPI.COMM_WORLD

0

12

5

3

4

6

7
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Adding Send() and Recv() to the Minimal Set 
of MPI Routines (mpiJava)

• MPI.Init(args)

—initialize MPI in each process

• MPI.Finalize()

—terminate MPI

• MPI.COMM_WORLD.Size()
—number of processes in COMM_WORLD communicator

• MPI.COMM_WORLD.Rank()

—rank of this process in COMM_WORLD communicator

• MPI.COMM_WORLD.Send()
—send message using COMM_WORLD communicator

• MPI.COMM_WORLD.Recv()

—receive message using COMM_WORLD communicator

Point-to-
point 
commn

39
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Example with Send() and Recv() calls
1.import mpi.*;

3.class myProg {
4.  public static void main( String[] args ) {
5.    int tag0 = 0;
6.    MPI.Init( args );        // Start MPI computation
7.    if ( MPI.COMM_WORLD.rank() == 0 ) { // rank 0 = sender
8.      int loop[] = new int[1]; loop[0] = 3;
9.      MPI.COMM_WORLD.Send( "Hello World!", 0, 12, MPI.CHAR, 1, tag0 );
10.     MPI.COMM_WORLD.Send( loop, 0, 1, MPI.INT, 1, tag0 );
11.   } else {                            // rank 1 = receiver
12.      int loop[] = new int[1]; char msg[] = new char[12];
13.      MPI.COMM_WORLD.Recv( msg, 0, 12, MPI.CHAR, 0, tag0 );
14.      MPI.COMM_WORLD.Recv( loop, 0, 1, MPI.INT, 0, tag0 );
15.      for ( int i = 0; i < loop[0]; i++ ) System.out.println( msg );
16.   }
17.   MPI.Finalize( );        // Finish MPI computation
18. }
19.}

Send() and Recv() calls are blocking operations by default

40
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Worksheet #11 (to be done individually or in pairs):
impact of distribution on parallel completion time

1.  public void sampleKernel(int iterations, 
2.                           int numChunks, dist d) {
3.    for (int iter = 0; iter < iterations; iter++) {
4.      finish for (point [jj] : [0:numChunks-1]) 
5.        async at(d.get(jj)) {
6.          perf.addLocalOps(jj);
7.          // Assume that time to process chunk jj is O(jj) 
8.      } // finish-for-async
9.      double[] temp = myNew; myNew = myVal; myVal = temp; 
10.   } // for iter
11. } // sample kernel

•Assume an execution with n places using the option, -places n:1
•Will a block or cyclic distribution for d have a smaller parallel completion 
time, assuming that all tasks on the same place are serialized?

41
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