
CS 181E: Fundamentals of
Parallel Programming

Instructor: Vivek Sarkar
Co-Instructor: Ran Libeskind-Hadas

http://www.cs.hmc.edu/courses/2012/fall/cs181e/

CS 181E Lecture 11 10 October 2012

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Recap of Lecture 10

• Linearizability of Concurrent Executions and
Concurrent Objects

• Liveness/progress guarantees

• Optimized Implementations of Isolated

2

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #10 solution:
Linearizability of method calls on a concurrent object

3

Is this a linearizable execution?

 No! q.enq(x) must precede q.enq(y) in all linear
sequences of method calls invoked on q. It is
illegal for the q.deq() operation to return y.

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline

• Task Affinity with Places

• Introduction to the Message Passing Interface (MPI)

4

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

An example Memory Hierarchy --- what is
the cost of a Memory Access?

Registers

L1	
 cache
	
 (Sta0c	
 RAM)

Main	
 memory
(Dynamic	
 RAM)

Local	
 secondary	
 storage
(local	
 disks)

Larger,	
 	

slower,	

cheaper	

per	
 byte

Remote	
 secondary	
 storage
(tapes,	
 distributed	
 file	
 systems,	
 Web	
 servers)

Local	
 disks	
 hold	
 files	

retrieved	
 from	
 disks	
 on	

remote	
 network	
 servers

Main	
 memory	
 holds	
 disk	
 blocks	

retrieved	
 from	
 local	
 disks

L2	
 cache
(Sta0c	
 RAM)

L1	
 cache	
 holds	
 cache	
 lines	
 retrieved	

from	
 L2	
 cache

CPU	
 registers	
 hold	
 words	
 retrieved	

from	
 L1	
 cache

L2	
 cache	
 holds	
 cache	
 lines	

retrieved	
 from	
 main	
 memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per	
 byte

Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx5

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 8,000 880 100 30 1 0.1 0.06 130,000
access (ns) 375 200 100 70 60 50 40 9
typical size (MB) 0.064 0.256 4 16 64 2,000 8,000 125,000

Storage Trends

DRAM

SRAM

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 500 100 8 0.30 0.01 0.005 0.0003 1,600,000
access (ms) 87 75 28 10 8 4 3 29
typical size (MB) 1 10 160 1,000 20,000 160,000 1,500,000 1,500,000

Disk

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 19,200 2,900 320 256 100 75 60 320
access (ns) 300 150 35 15 3 2 1.5 200

6 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Cache Memories
• Cache memories are small, fast SRAM-based memories managed

automatically in hardware.
—Hold frequently accessed blocks of main memory

• CPU looks first for data in caches (e.g., L1, L2, and L3), then
in main memory.

• Typical system structure:

7 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Examples of Caching in the Hierarchy

Ultimate goal: create a large pool of storage with average cost
per byte that approaches that of the cheap storage near the
bottom of the hierarchy, and average latency that approaches
that of fast storage near the top of the hierarchy.

8 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

Ideally one would desire an indefinitely large memory
capacity such that any particular … word would be immediately

available. … We are … forced to recognize the possibility of constructing a
hierarchy of memories, each of which has greater capacity than the preceding
but which is less quickly accessible.

A. W. Burks, H. H. Goldstine, and J. von Neumann
Preliminary Discussion of the Logical Design of an

Electronic Computing Instrument (1946)

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Locality
• Principle of Locality:

—Empirical observation: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

• Temporal locality:
— Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:
— Items with nearby addresses tend

to be referenced close together in time
— A Java programmer can only influence spatial locality at the intra-object level

– The garbage collector and memory management system determines inter-
object placement

9 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Locality Example

• Data references
—Reference array elements in succession

(stride-1 reference pattern).
—Reference variable sum each iteration.

• Instruction references
—Reference instructions in sequence.
—Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spa0al	
 locality

Temporal	
 locality

Spa0al	
 locality
Temporal	
 locality

10 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Memory Hierarchy in a Multicore
Processor

• Memory hierarchy for a single Intel Xeon Quad-core E5440
HarperTown processor chip

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

11

Core-pair

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Programmer Control of Task Assignment to
Processors

• The parallel programming constructs that we’ve
studied thus far result in tasks that are assigned to
processors dynamically by the HJ runtime system
—Programmer does not worry about task assignment details

• Sometimes, programmer control of task assignment
can lead to significant performance advantages due
to improved locality

• Motivation for HJ “places”
—Provide the programmer a mechanism to map each task to a

set of processors when the task is created

12

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Places in HJ

HJ Places

Java Worker Threads

HJ programmer defines mapping from
HJ tasks to set of places

HJ Tasks

HJ runtime defines mapping from places to one
or more worker Java threads per place

The option “-places p:w” when executing an HJ
program can be used to specify
 p, the number of places
 w, the number of worker threads per place

OS threads

Processor Cores

13

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example of –places 4:2 option on an 8-core
node (4 places w/ 2 workers per place)

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

14

Place 0 Place 1

Place 2

Place 1Place 1

Place 3

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Places in HJ
here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) = place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”

<place-expr>.id returns the id of the place as an int

async at(P) S

• Creates new task to execute statement S at place P

• async S is equivalent to async at(here) S

• Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child
task is executing, not the place where the parent task is executing

15

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example of –places 4:2 option on an 8-core
node (4 places w/ 2 workers per place)

Place 1

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

Place 0 Place 1

Place 2 Place 3

// Main program starts at place 0
async at(place.factory.place(0)) S1;
async at(place.factory.place(0)) S2;

async at(place.factory.place(1)) S3;
async at(place.factory.place(1)) S4;
async at(place.factory.place(1)) S5;

async at(place.factory.place(2)) S6;
async at(place.factory.place(2)) S7;
async at(place.factory.place(2)) S8;

async at(place.factory.place(3)) S9;
async at(place.factory.place(3)) S10;

16

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example of –places 1:8 option
(1 place w/ 8 workers per place)

17

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

Place 0

All async’s run at place 0 when there’s only one place!

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example HJ program with places

18

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Distributions --- hj.lang.dist
• A distribution maps points in a rectangular index space (region) to

places e.g.,
— i à place.factory.place(i % place.MAX_PLACES-1)

• Programmers are free to create any data structure they choose to
store and compute these mappings

• For convenience, the HJ language provides a predefined type,
hj.lang.dist, to simplify working with distributions

• Some public members available in an instance d of hj.lang.dist are:

—d.rank = number of dimensions in the input region for distribution d
—d.get(p) = place for point p mapped by distribution d. It is an error to

call d.get(p) if p.rank != d.rank.
—d.places() = set of places in the range of distribution d
—d.restrictToRegion(pl) = region of points mapped to place pl by

distribution d

19

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Block Distribution
• dist.factory.block([lo:hi]) creates a block distribution over the

one-dimensional region, lo:hi.

• A block distribution splits the region into contiguous subregions,
one per place, while trying to keep the subregions as close to
equal in size as possible.

• Block distributions can improve the performance of parallel loops
that exhibit spatial locality across contiguous iterations.

• Example in Table 1: dist.factory.block([0:15]) for 4 places

20

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Block Distribution (contd)
• If the input region is multidimensional, then a block distribution

is computed over the linearized one-dimensional version of the
multidimensional region

• Example in Table 2: dist.factory.block([0:7,0:1]) for 4 places

21

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Distributed Parallel Loops
• Listing 2 shows the typical pattern used to iterate over an input

region r, while creating one async task for each iteration p at
the place dictated by distribution d i.e., at place d.get(p).

• This pattern works correctly regardless of the rank and
contents of input region r and input distribution d i.e., it is not
constrained to block distributions

22

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Cyclic Distribution
• dist.factory.cyclic([lo:hi]) creates a cyclic distribution over the

one-dimensional region, lo:hi.

• A cyclic distribution “cycles” through places 0 … place.MAX
PLACES − 1 when spanning the input region

• Cyclic distributions can improve the performance of parallel
loops that exhibit load imbalance

• Example in Table 3: dist.factory.cyclic([0:15]) for 4 places

• Example in Table 4: dist.factory.cyclic([0:7,0:1]) for 4 places

23

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Chunked Fork-Join Iterative
Averaging Example with Places

1. public void runDistChunkedForkJoin(int iterations,
2. int numChunks, dist d) {
3. for (int iter = 0; iter < iterations; iter++) {
4. finish for (point [jj] : [0:numChunks-1])
5. async at(d.get(jj)) {
6. for (point [j] : getChunk([1:n],numChunks,jj))
7. myNew[j] = (myVal[j-1] + myVal[j+1]) / 2.0;
8. } // finish-for-async
9. double[] temp = myNew; myNew = myVal; myVal = temp;
10. } // for iter
11. } // runDistChunkedForkJoin

•Chunk jj is always executed in the same place for each iteration,
iter
•Method runDistChunkedForkJoin can be called with different values
of distribution parameter d

24

Let’s try another example of a distributed parallel
loop in Worksheet 11!

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Analyzing Locality of Fork-Join Iterative Averaging
Example with Places

25

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Block-Cyclic Distribution
• dist.factory.blockCyclic([lo:hi],b) creates a block-cyclic

distribution over the one-dimensional region, lo:hi.

• A block-cyclic distribution combines the locality benefits of the
block distribution with the load-balancing benefits of the cyclic
distribution by introducing a block size parameter, b.

• The linearized region is first decomposed into contiguous blocks
of size b, and then the blocks are distributed in a cyclic manner
across the places.

• Example in Table 5: dist.factory.blockCyclic([0:15],2) for 4
place with block size b = 2

26

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline

• Task Affinity with Places

• Introduction to the Message Passing Interface (MPI)

27

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Organization of a Distributed-Memory
Multiprocessor

Figure (a)

• Host node (Pc) connected to a cluster of processor nodes (P0 … Pm)

• Processors P0 … Pm communicate via a dedicated high-performance
interconnection network (e.g., Infiniband)
—Supports much lower latencies and higher bandwidth than standard TCP/

IP networks

Figure (b)

• Each processor node consists of a processor, memory, and a Network
Interface Card (NIC) connected to a router node (R) in the interconnect

28

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Principles of
Message-Passing Programming

• The logical view of a machine supporting the message-passing
paradigm consists of p processes, each with its own exclusive
address space.
1. Each data element must belong to one of the partitions of the

space; hence, data must be explicitly partitioned and placed.
2. All interactions (read-only or read/write) require cooperation of

two processes - the process that has the data and the process
that wants to access the data.

• These two constraints, while onerous, make underlying costs
very explicit to the programmer.

• In this loosely synchronous model, processes synchronize
infrequently to perform interactions. Between these
interactions, they execute completely asynchronously.

• Most message-passing programs are written using the single
program multiple data (SPMD) model.

29

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

SPMD Pattern
• SPMD: Single Program Multiple Data

• Run the same program on P processing elements (PEs)

• Use the “rank” … an ID ranging from 0 to (P-1) … to determine
what computation is performed on what data by a given PE

• Different PEs can follow different paths through the same code

• Convenient pattern for hardware platforms that are not
amenable to efficient forms of dynamic task parallelism
—General-Purpose Graphics Processing Units (GPGPUs)
—Distributed-memory parallel machines

• Key design decisions --- how should data and computation be
distributed across PEs?

30

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Using the SPMD model with a Global View of Data:
Iterative Averaging (Slide 9, Lecture 13)

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2];

2. gVal[n+1] = 1; // Boundary condition

3. int Cj = Runtime.getNumOfWorkers();

4. forall (point [jj]:[0:Cj-1]) { // SPMD computation with “id” = jj

5. double[] myVal = gVal; double[] myNew = gNew; // Local copy

6. for (point [iter] : [0:numIters-1]) {

7. // Compute MyNew as function of input array MyVal

8. for (point [j]:getChunk([1:n],[Cj],[jj]))

9. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

10. next; // Barrier before executing next iteration of iter loop

11. // Swap myVal and myNew (replicated computation)

12. double[] temp=myVal; myVal=myNew; myNew=temp;

13. // myNew becomes input array for next iter

14. } // for

15.} // forall

31

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Data Distribution: Local View in
Distributed-Memory Systems

32

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Using the SPMD model with a Local View

Processors must communicate via messages for non-local data accesses

• Similar to communication constraint for actors (except that we allowed
hybrid combinations of global task parallelism and local actor parallelism in
HJ)

33

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

MPI: The Message Passing Interface
• Sockets and Remote Method Invocation (RMI) are communication

primitives used for distributed Java programs.
—Designed for standard TCP/IP networks rather than high-performance

interconnects

• The Message Passing Interface (MPI) standard was designed to
exploit high-performance interconnects
—MPI was standardized in the early 1990s by the MPI Forum—a

substantial consortium of vendors and researchers
– http://www-unix.mcs.anl.gov/mpi

—It is an API for communication between nodes of a distributed memory
parallel computer

—The original standard defines bindings to C and Fortran (later C++)
– Java support is available from a research project, mpiJava,

developed at Indiana University 10+ years ago
http://www.hpjava.org/mpiJava.html

34

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Features of MPI

• MPI is a platform for Single Program Multiple Data (SPMD)
parallel computing on distributed memory architectures, with an
API for sending and receiving messages

• It includes the abstraction of a “communicator”, which is like
an N-way communication channel that connects a set of N
cooperating processes (analogous to a phaser)

• It also includes explicit datatypes in the API, that are used to
describe the contents of communication buffers.

35

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

The Minimal Set of MPI Routines (mpiJava)

• MPI.Init(args)
—initialize MPI in each process

• MPI.Finalize()
—terminate MPI

• MPI.COMM_WORLD.Size()
—number of processes in COMM_WORLD communicator

• MPI.COMM_WORLD.Rank()
—rank of this process in COMM_WORLD communicator

• Note:
—In this subset, processes act independently with no information

communicated among the processes.
—“embarrassingly parallel”, Cleve Moler.

36

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Our First MPI Program
(mpiJava version)

1.import mpi.*;
2.class Hello {
3. static public void main(String[] args) {
4. // Init() be called before other MPI calls
5. MPI.Init(args); /
6. int npes = MPI.COMM_WORLD.Size()
7. int myrank = MPI.COMM_WORLD.Rank() ;
8. System.out.println(”My process number is ” + myrank);
9. MPI.Finalize(); // Shutdown and clean-up
10. }
11.}

main() is enclosed in an
implicit “forall” --- each
process runs a separate
instance of main() with
“index variable” = myrank

37

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

MPI Communicators
• Communicator is an internal object

—Communicator registration is like phaser registration,
except that MPI does not support dynamic parallelism

• MPI programs are made up of communicating processes

• Each process has its own address space containing its
own attributes such as rank, size (and argc, argv, etc.)

• MPI provides functions to interact with it

• Default communicator is MPI.COMM_WORLD
—All processes are its members
—It has a size (the number of processes)
—Each process has a rank within it
—Can think of it as an ordered list of processes

• Additional communicator(s) can co-exist

• A process can belong to more than one communicator

• Within a communicator, each process has a unique rank

MPI.COMM_WORLD

0

12

5

3

4

6

7

38

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Adding Send() and Recv() to the Minimal Set
of MPI Routines (mpiJava)

• MPI.Init(args)

—initialize MPI in each process

• MPI.Finalize()

—terminate MPI

• MPI.COMM_WORLD.Size()
—number of processes in COMM_WORLD communicator

• MPI.COMM_WORLD.Rank()

—rank of this process in COMM_WORLD communicator

• MPI.COMM_WORLD.Send()
—send message using COMM_WORLD communicator

• MPI.COMM_WORLD.Recv()

—receive message using COMM_WORLD communicator

Point-to-
point
commn

39

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example with Send() and Recv() calls
1.import mpi.*;

3.class myProg {
4. public static void main(String[] args) {
5. int tag0 = 0;
6. MPI.Init(args); // Start MPI computation
7. if (MPI.COMM_WORLD.rank() == 0) { // rank 0 = sender
8. int loop[] = new int[1]; loop[0] = 3;
9. MPI.COMM_WORLD.Send("Hello World!", 0, 12, MPI.CHAR, 1, tag0);
10. MPI.COMM_WORLD.Send(loop, 0, 1, MPI.INT, 1, tag0);
11. } else { // rank 1 = receiver
12. int loop[] = new int[1]; char msg[] = new char[12];
13. MPI.COMM_WORLD.Recv(msg, 0, 12, MPI.CHAR, 0, tag0);
14. MPI.COMM_WORLD.Recv(loop, 0, 1, MPI.INT, 0, tag0);
15. for (int i = 0; i < loop[0]; i++) System.out.println(msg);
16. }
17. MPI.Finalize(); // Finish MPI computation
18. }
19.}

Send() and Recv() calls are blocking operations by default

40

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #11 (to be done individually or in pairs):
impact of distribution on parallel completion time

1. public void sampleKernel(int iterations,
2. int numChunks, dist d) {
3. for (int iter = 0; iter < iterations; iter++) {
4. finish for (point [jj] : [0:numChunks-1])
5. async at(d.get(jj)) {
6. perf.addLocalOps(jj);
7. // Assume that time to process chunk jj is O(jj)
8. } // finish-for-async
9. double[] temp = myNew; myNew = myVal; myVal = temp;
10. } // for iter
11. } // sample kernel

•Assume an execution with n places using the option, -places n:1
•Will a block or cyclic distribution for d have a smaller parallel completion
time, assuming that all tasks on the same place are serialized?

41

Name 1: ___________________ Name 2: ___________________

