b

CS 181E: Fundamentals of
Parallel Programming

Instructor: Vivek Sarkar
Co-Instructor: Ran Libeskind-Hadas

http://www.cs.hmc.edu/courses/2012/fall/cs181e/

CS 181E Lecture 13 17 October 2012

Async and Finish Statements for Task
Creation and Termination (Lecture 1)

async S finish S

= Execute S, but wait until all
asyncs in S’s scope have
terminated.

Creates a new child task that
executes statement S

// T,(Parent task)
STMTO ;
finish { //Begin finish
async {
STMT1; //T,(Child task)
}
STMT2; //Continue in T,
//Wait for T,
} //End finish
STMT3; //Continue in T,

2 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #1 Solution: Insert finish to get correct
Two-way Parallel Array Sum program

1. // Start of Task TO (main program)

2. suml = 0; sum2 = 0; // suml & sum2 are static fields

3. finish {

4. async { // Task Tl computes sum of upper half of array
5. for (int i=X.length/2; i < X.length; i++) sum2 += X[i];
6. }

7. // TO computes sum of lower half of array

8. for (int i=0; i < X.length/2; i++) suml += X[i];

9. }

10. // Task TO waits for Task Tl (join)

11. return suml + sum2;

3 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #2 solution: what is the critical
path length and ideal speedup of this graph?

« Assume time(N) = 1 for all nodes in this graph

WORK(G) = 18

CPL(G) = 9

? Ideal Speedup = 2

4 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Formal Definition of Data Races
(Lecture 2)

Formally, a data race occurs on location L in a program
execution with computation graph CG if there exist steps
(nodes) S1 and S2 in C6 such that:

1. S1 does not depend on S2 and S2 does not depend on S1 i.e.,
there is no path of dependence edges from S1 to S2 or from S2
to S1 in C6, and

2. Both S1 and S2 read or write L, and at least one of the accesses
is a write.

Data races are challenging because of

« Nondeterminism: different executions of the parallel program with
the same input may result in different outputs.

- Debugging and Testing: it is usually impossible to guarantee that all
possible orderings of the accesses to a location will be encountered
during program debugging and testing.

5 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example of Incorrect Parallel Program in
Homework 0 (Problem 1.2)

// Sequential version
for (p = first; p != null; p = p.next) p.x = p.y + p.z:
for (p = first; p = null; p = p.next) sum += p.x;

// Incorrect parallel version

for (p = first; p != null; p = p.next)
async p.x = p.y + p.z;

for (p = first; p != null; p = p.next)

VW oNOSO RN

sum += p.X;

Why is the parallel version incorrect?

Data race between write of p.x in line 7 and read of p.x in line 9 !

6 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Relating Data Races and Determinism

* A parallel program is said to be deterministic with respect to
its inputs if it always computes the same answer when given
the same inputs.

Structural Determinism Property

—If a parallel program is written using the constructs in Module 1 and is
guaranteed to be race-free, then it must be deterministic with respect
to its inputs. The final computation graph is also guaranteed to be the
same for all executions of the program with the same inputs.

Constructs introduced in Module 1 ("Deterministic Shared-
Memory Parallelism”) include async, finish, finish
accumulators, futures, data-driven tasks (async await),
forall, barriers, phasers, and phaser accumulators.

— The notable exceptions are critical sections, isolated statements, and
actors, all of which will be covered in Module 2 ("Nondeterministic
Shared-Memory Parallelism”)

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #3 solution: Complexity analysis of
k-way Parallel Array Sum algorithm

Consider a k-way parallel array-sum algorithm, where 1 <= k <= n
* Compute k partial sums in parallel, each of size n/k
- Sequentially combine the k partial sums into a single sum

Total number of additions, WORK = k (n/k -1) + k = O(n)

What is the critical path length?
—CPL = O(n/k + k)
—Stage 1 takes O(n/k) time and Stage 2 takes O(k) time

What value of k gives the smallest value of CPL?
—Optimal value of k = sqrt(n)

8 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

HJ Futures: Tasks with Return Values

(Lecture 3)
async<T> { Stmt-Block } Expr.get ()
« Creates a new child task that
executes Stmt-Block, which " Evaluates Expr, and blocks if
must terminate with a refturn Expr's value is unavailable

statement returning a value of " Expr must be of type future<T>

type T = Return value from Expr.get()

Async expression returns a will then be T
reference to a container of

type future<Ts = Unlike finish which waits for all

tasks in the finish scope, a

Values of type future<T> can get() operation only waits for
only be assigned to final the specified async expression
variables

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example: Two-way Parallel Array Sum
using Future Tasks

1. // Parent Task Tl (main program)

2. // Compute suml (lower half) and sum2 (upper half) in parallel
3. final future<int> suml = async<int> { // Future Task T2

4. int sum = 0;

5. for(int i=0 ; i < X.length/2 ; i++) sum += X[i];

6. return sum;

7. }; //NOTE: semicolon needed to terminate assignment to suml
8. inal future<int> sum2 = async<int> { // Future Task T3

9. int sum = 0;

10. for(int i=X.length/2 ; i < X.length ; i++) sum += X[i];
11. return sum;

12/ }; //NOTE: semicolon needed to terminate assignment to sum2

/Task T1 waits for Tasks T2 and T3 to complete
int total = suml.get() + sum2.get();

Why are these semicolons needed?

10 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Extending HJ Futures for Macro-Dataflow:
Data-Driven Futures (DDFs) and Data-Driven Tasks (DDTSs)

ddfA = new DataDrivenFuture<T1>();

» Allocate an instance of a data-driven-future object (container)

» Object in container must be of type T1
async await (ddfA, ddfB, ..) Stmt

* Create a new data-driven-task to start executing Stmt after all of
ddfA, ddfB, .. become available (i.e., after task becomes “enabled”)

ddfA.put (V) ;

» Store object V (of type T1) in ddfA, thereby making ddfA available
» Single-assignment rule: at most one put is permitted on a given DDF
ddfA.get()

* Return value (of type T1) stored in ddfA

* Can only be performed by async’'s that contain ddfA in their await
clause (hence no blocking is necessary for DDF gets)

11 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example Habanero Java code fragment
with Data-Driven Futures

. DataDrivenFuture left = new DataDrivenFuture();
. DataDrivenFuture right = new DataDrivenFuture();
finish {
async await(left) leftReader(left); // Task3
async await(right) rightReader(right); // Task5
async await(left,right)
bothReader (left,right); // Task4
async left.put(leftWriter()); // Taskl
async right.put(rightWriter());// Task2 Task: Taska

R W 00 ~N o Ul b W N =

0. }
 await clauses capture data flow relationships l \ / \
 type parameter is optional for DataDrivenFuture Tasks Tasks Tasks

e if omitted, may require cast operators to be inserted instead
e (just as with standard Java generics in sequential programs)

12 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas

Worksheet #4: Computation Graphs for
Async-Finish and Future Constructs (Y (O

1) Can you write an HJ program

with async-finish constructs that o G
generates a Computation Graph
with the same ordering e
constraints as the graph on the 1. final future<void> A = async<void>
right? No 2. { ..}

3. final future<void> B = async<void>
2) Can you write an HJ program 4. { A.get(); . . . };

with future async-get constructs 5. final future<void> C = async<void>
that generates a Computation

6raph with the same ordering
constraints as the graph on the
right? If so, provide a sketch of
the program.

6. { A.get(); . . . };

7. final future<void> D = async<void>

{ B.get(); C.get(); . . . };

9. final future<void> E = async<void>

10. { C.get(); . . . };
Yes, see HJ code on the r-igh'l' 11. final future<void> F = async<void>
12. { D.get(); E.get(); . . . };

13 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #4: Computation Graphs for
Async-Finish and Future Constructs (Y (O

1) Can you write an HJ program

with async-finish constructs that o G
generates a Computation Graph
with the same ordering e
constraints as the graph on the 1. final future<void> A = async<void>
right? No 2. { ..}

3. final future<void> B = async<void>
2) Can you write an HJ program 4. { A.get(); . . . };

with future async-get constructs 5. final future<void> C = async<void>
that generates a Computation

6raph with the same ordering
constraints as the graph on the
right? If so, provide a sketch of
the program.

6. { A.get(); . . . };

7. final future<void> D = async<void>

{ B.get(); C.get(); . . . };

9. final future<void> E = async<void>

10. { C.get(); . . . };
Yes, see HJ code on the r-igh'l' 11. final future<void> F = async<void>
12. { D.get(); E.get(); . . . };

14 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

HJ’s pointwise for & forasync statements
(Lecture 4)

Goal: capture common for-async pattern in a single construct for
multidimensional loops e.g., replace

finish {

for (int I =0 ; I < N ; I++)
for (int J =0 ; J < N ; J++)
async
for (int K = 0 ; K < N ; K++)
C[I][J] += A[I][K] * B[K][J];

by
finish forasync (point [I,J] : [0:N-1,0:N-1])
for (point[K] : [0:N-1])
C[I][J] += A[I][K] * B[K][J];

15 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

hj.lang.point, an index type for multi-
dimensional loops

» A point is an element of an n-dimensional Cartesian space (n>=1)
with integer-valued coordinates e.g., [5], [1, 2], ..

— Dimensions of a point are numbered from O to n-1

—n is also referred to as the rank of the point

« A point variable can hold values of different ranks e.g.,
—point p; p = [1]; .. p = [2,3]. ..
« The following operations are defined on point-valued expression p1
—pl.rank --- returns rank of point pl
— pl.get(i) --- returns element i of point pl
- Returns element (i mod pl.rank) if i < O or i >= pl.rank
—pl.1%(p2), pl.le(p2), p1.g%(p2). p1.ge(p2)
- Returns true iff pl is lexicographically <, <=, >, or >= p2

- Onlx defined when El.r'ank and El.r'ank are egual

16 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

hj.lang.region, a rectangular iteration

space for multi-dimensional loops

A

is the set of points contained in a rectangular subspace

A region variable can hold values of different ranks e.g.,

region R; R=[0:10]; ... R=[-100:100, -100:100]; ... R=[0:-1]; ...

Operations

R.rank ::= # dimensions in region;

R.size() ::= # points in region

R.contains(P) ::= predicate if region R contains point P

R.contains(S) ::= predicate if region R contains region S

R.equal(S) ::= true if region R equals region S

R.rank(i) ::= projection of region R on dimension i (a one-dimensional region)
R.rank(i).low() ::= lower bound of i™ dimension of region R

R.rank(i).high() ::= upper bound of i dimension of region R

R.ordinal(P) ::= ordinal value of point P in region R

R.coord(N) ::= point in region R with ordinal value = N

17

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Pointwise sequential for loop

« HJ extends Java's for loop to support sequential iteration over
points in region R in canonical lexicographic order

— for (point p : R)

« Standard point operations can be used to extract individual index
values from point p
— for (point p : R) { int i = p.get(0); int j =

p.get(l); . . . }

* Or an "exploded” syntax is commonly used instead of explicitly
declaring a point variable
— for (point [i,j] : R) { . . . }

* The exploded syntax declares the constituent variables (i, j, ...)
as local int variables in the scope of the for loop body

18 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

forasync examples: updates to a
two-dimensional Java array

// Case 1l: loops i,j can run in parallel

forasync (point[i,j] : [0:m-1,0:n-1]) A[i][]j] = F(A[i]1[]]) ;

// Case 2: only loop i can run in parallel
forasync (point[i] : [1l:m-1])
for (point[j] : [l:n-1]) // Equivalent to “for (j=1;j<n;j++)”

A[i][]J] = F(A[L]1[]-1]) ;

// Case 3: only loop j can run in parallel
for (point[i] : [1l:m-1]) // Equivalent to “for (i=1l;i<m;j++)"”
finish forasync (point[j] : [1l:n-1])
A[i][]J] = F(A[i-1][31) ;

19 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

20

One-Dimensional lterative Averaging Example

Initialize a one-dimensional array of (n+2) double's with boundary
conditions, myVal[0] = O and myVal[n+1] = 1.

In each iteration, each interior element myVal[i] in 1..n is replaced by
the average of its left and right neighbors.
— Two separate arrays are used in each iteration, one for old values and the
other for the new values
After a sufficient number of iterations, we expect each element of the
array to converge to myVal[i] = i/(n+1)
— In this case, myVal[i] = (myVal[i-1]+myVal[i+1])/2, for all i in 1..n

n=_8

m0.34 0.21/0.86|10.65/0.11(0.43(0.97|0.51 puEsle;
? “

Y = ?

Boundary value Interior values Boundary value

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Barrier Synchronization:
HJ’s “next” statement in forall loops

forall (point[i] : [0:m-1]) {
String s = taskString(i); // returns “task 0” fo | i=0
System.out.println(“Hello from task “ + 1i);]- Phase O
next; // Acts as barrier between phases 0 and 1

System.out.println(“Goodbye from task “ + 1i); } Phase 1

N Ol b W N =

* next = each forall iteration suspends at next until all iterations arrive
(complete previous phase), after which the phase can be advanced

— If a forall iteration terminates before executing “next”, then the other
iterations do not wait for it

— Scope of synchronization is the closest enclosing forall statement
— Special case of “"phaser” construct (will be covered in following lectures)

21 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

HJ code for One-Dimensional lterative Averaging with
nested for-forall structure

. double[] myVal=new double[n+2]; double[] myNew=new double[n+2];
. myVal[n+l] = 1; // Boundary condition
. for (point [iter] : [O:numIters-1]) {

// Compute MyNew as function of input array MyVal

1
2
3
4
5. forall (point [j] : [1l:n]) { // Create n tasks
6 myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

7 } // forall

8 // Swap myVal and myNew

9

double[] temp=myVal; myVal=myNew; myNew=temp;

10. // myNew becomes input array for next iteration
11.} // for
Overhead issue --- this version creates (numIters * n) async tasks

22 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

HJ code for One-Dimensional lterative Averaging with
barriers (forall-for-next structure)

Vo 0 N OO R W N

[T O Y
w N = O

double[] gVal=new double[n+2];double[] gNew=new double[n+2];gVal[n+1l]=1;gNew[n+1l]=1;
forall (point [j] : [1l:n]) {
double[] myVal = gVal; double[] myNew = gNew; // Local copy of myVal/myNew pointers
for (point [iter] : [O:numIters-1]) {
// Compute MyNew as function of input array MyVal
myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
next; // Barrier before executing next iteration of iter loop
// Swap myVal and myNew (each forall iteration swaps
// its pointers in local vars)
double[] temp=myVal; myVal=myNew; myNew=temp;
// myNew becomes input array for next iter

} // for

. } // forall

Overhead issue --- this version creates n async tasks, but performs numIters barrier operations on n
tasks

— Good trade-off since barrier operations have lower overhead than task creation

23 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #5 (to be done in pairs):
Use of seq clause in Quicksort() program

l.static void quicksort(int[] A, int M, int N) {

2 if (M < N) { // sort A[M...N]

3 // partition() selects a pivot element in A[M.N]
Insert seq clauses
on the r'igh‘r to 4 // to partition A[M.N] into A[M..J] and A[I..N]
ensure that an 5. point p = partition(A, M, N);
async is only 6 int I=p.get(0); int J=p.get(l);
created for calls to 7 async seq(J-M+1 < 10000) quicksort(A, M, J);
quicksort with >= 8 async seq(N-I+1 < 10000) quicksort(A, I, N);
10,000 elements 9. }

10.} //quicksort
11.

12. finish quicksort(A, 0, A.length-1);

24 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Barrier vs Point-to-Point Synchronization for
One-Dimensional lterative Averaging Example (Lecture 6)

iter=i @@ ©@ O O O O o o o o o o

ter=i+1 @ © © © © © © © © o o o

Barrier synchronization

iter=i @ @ © © © ©© © ©© ©© o o o

2K X K K XK K X XX

iter=i+1 @ @@ © © © © © © ©o© o o o

Point-to-point synchronization

(Left-right neighbor synchronization)

25 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Summary of Phaser Construct

« Phaser allocation
— phaser ph = new phaser(mode);
- Phaser ph is allocated with registration mode
- Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)
* Registration Modes
— phaserMode.SIG, phaserMode WAIT, phaserMode.SIG_WAIT, phaserMode.SIG_WAIT_SINGLE
— NOTE: phaser WAIT has no relationship to Java wait/notify
« Phaser registration
— async phased (ph,<mode,>, ph,<mode,>, ..) <stmt>
- Spawned task is registered with ph, in mode,, ph, in mode,, ..
- Child task’'s capabilities must be subset of parent's
- async phased <stmt> propagates all of parent’s phaser registrations to child
« Synchronization
— next;
- Advance each phaser that current task is registered on to its next phase
- Semantics depends on registration mode

26 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Simple Example with Four Async Tasks
and One Phaser (contd)

Semantics of next depends on registration mode
SIG_WAIT: next = signal + wait
SIG: next = signal (Don’t wait for any task)
WAIT: next = wait (Don’t disturb any task)

SIG SIG_WAIT SIG_WAIT WAIT

A master task receives all signals and broadcasts a barrier completion

27 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2];

2. gVal[n+l] = 1; gNew[n+l] = 1;

3. phaser ph = new phaser[n+2];

4. finish { // phasers must be allocated in finish scope

5. forall(point [i]:[0:n+1]) ph[i] = new phaser();

6 forasync(point [j]:[1l:n]) phased(ph[j]<SIG>,ph[j-1]<WAIT>,ph[j+1]<WAIT>)({

7 double[] myVal = gVal; double[] myNew = gNew; // Local copy of pointers

8 for (point [iter] : [O:numIters-1]) {

9 myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

10. next; // Point-to-point synchronization

11. // Swap myVal and myNew

12. double[] temp=myVal; myVal=myNew; myNew=temp;

13. // myNew becomes input array for next iter

14. } // for-iter

15. } // forasync-j

16.} // finish iter =i .><.><.><

ter=i+1 @ @ @

28 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

One-Dimensional Iterative Averaging with
Point-to-Point Synchronization

Worksheet #7 solution:
Left-Right Neighbor Synchronization using Phasers

i=1 =2 =3 =4 =5 =6 i=7 i=8
doPhase1(i) @ @

XXX XXX

doPhase2(i) @ @

Complete the phased clause below to implement the left-right
neighbor synchronization shown above

1. finish {

2. phaser[] ph = new phaser[m+2];

3. for(point [i1]:[0:m+1]) ph[i] = new phaser();

4. for(point [i] : [1l:m])

5. async phased(ph[i-1]<WAIT>,ph[i]<SIG>,ph[i+1]<WAIT>) {
6. doPhasel (i);

7. next;

8. doPhase2 (i);

9. }

10.}

29 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Summary of Module 1: Deterministic
Shared-Memory Parallelism

« Serializable subset of HJ
—{async, finish, future, forasync}

— Erasure property: any HJ program written using the above constructs can
be converted to an equivalent sequential program by erasing all parallel
constructs

« Deadlock-free subset of HJ

—{next, barriers, phasers, forall, async phased} + serializable subset

— Deadlock-freedom property: any HJ program written using the above
constructs is guaranteed to never deadlock

« Deterministic subset of HJ
—{data driven futures, async await} + deadlock-free subset

— Data-race-free structural determinism property: if any HJ program
written using the above constructs is guaranteed to be data-race-free
for a given input, then it must also be deterministic for that input i.e.,
all executions with the same input must generate the same output AND
the same computation graph

30 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

HJ isolated statement (Lecture 7)

isolated <body>

Isolated statement identifies a critical section

Two tasks executing isolated statements must perform them in
mutual exclusion

>Weak isolation guarantee: mutual exclusion applies to (isolated,
isolated) pairs of statement instances, but not to (isolated, non-
isolated) and (non-isolated, non-isolated) pairs of statement instances

— That's why we call this construct “isolated” instead of “atomic”
Isolated statements may be nested (redundant)

Isolated statements must not contain any other parallel statement
that performs a blocking operation: finish, future get, next,
async await

—Non-blocking operations (e.g., async) are fine

Isolated statements can never deadlock

31

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Object-based isolation in HJ

isolated(<object-1list>) <body>

« In this case, programmer specifies list of objects for
which isolation is required

* Mutual exclusion is only guaranteed for instances of
isolated statements that have a non-empty
intersection in their object lists

—Standard isolated is equivalent to isolated(*) by
default i.e., isolation across all objects

* Implementation can choose to distinguish between
read/write accesses for further parallelism

—Current HJ implementation supports object-based
isolation, but does not exploit read/write distinction

32 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

DoublyLinkedListNode Example
revisited with Object-Based Isolation

1. class DoublyLinkedListNode {
2. DoublyLinkedListNode prev, next;

3.

4. void delete() {

5. isolated(this.prev, this, this.next) { // object-based isolation
6. this.prev.next = this.next;

7. this.next.prev = this.prev;

8. }

9. . e .

10. }

11. } // poublyLinkedListNode

12. . . .

13. static void deleteTwoNodes (DoublyLinkedListNode L) {
14. finish {

15. DoublyLinkedListNode second = L.next;
16. DoublyLinkedListNode third = second.next;
17. async second.delete();

18. async third.delete();

19.

20. }

33 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

java.util.concurrent.atomic.Atomiclnteger

» Constructors
—new AtomicInteger()

- Creates a new AtomicInteger with initial value 0
—new AtomicInteger(int initialValue)

- Creates a new AtomicInteger with the given initial value

« Selected methods
— int addAndGet(int delta)

- Atomically adds delta to the current value of the atomic
variable, and returns the new value
— int getAndAdd(int delta)

- Atomically returns the current value of the atomic
variable, and adds delta to the current value

« Similar interfaces available for LongInteger

34 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #8 solution:

Insertion of isolated for correctness

The goal of IsolatedPRNG is to implement a single Pseudo Random
Number Generator object that can be shared by multiple tasks.
Show the isolated statement(s) that you can insert in method
nextSeed() to avoid data races and guarantee proper semantics.

class IsolatedPRNG {

private int seed;

public int nextSeed() {

int retval;
isolated {

retVal = seed;

seed = nextInt(retVal);

}

return retVal;
} // nextSeed()

} // IsolatedPRNG

// Initial seed
IsolatedPRNG r

main() { // Pseudocode

= 1]
new IsolatedPRNG(1);

async { print r.nextSeed(); ... }
async { print r.nextSeed(); ... }
} // main()

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

35

Actor Life Cycle (Lecture 9)

O—>| NEW [—>| STARTED —»| TERMINATED —>()

Actor states
* New: Actor has been created

* e.g., email account has been created

* Started: Actor can receive and process messages

* e.g., email account has been activated

* Terminated: Actor will no longer processes messages

* e.g., termination of email account after graduation

36 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Using Actors in HJ

* Create your custom class which extends hj.lang.Actor<Object> ,and
implement the void process() method

class MyActor extends Actor<Object> {
protected void process (Object message) {
System.out.println(“Processing “ + message);
} o}

* Instantiate and start your actor
Actor<Object> anActor = new MyActor(); anActor.start()

* Send messages to the actor

anActor.send(aMessage); //aMessage can be any object in general

* Use a special message to terminate an actor

protected void process(Object message) {
if (message.someCondition()) exit();

}

Actor execution implemented as async tasks in HJ

* Can use finish to await their comEIeTion

37 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Hello World Example

1. public class HelloWorld {

2 public static void main(String[] args) {

3 EchoActor actor = new EchoActor();

4 actor.start(); // don’'t forget to start the actor

5. actor.send("Hello"); // asynchronous send (returns immediately)

6 actor.send("World");

7 actor.send (EchoActor.STOP_MSG) ; sends are GSY"ChI"OﬂOUS
8. } in actor model, but HJ
9. }

10.class EchoActor extends Actor<Object> {

Actor library preserves

11. static final Object STOP_MSG = new Object(); order of messages
12. private int messageCount = 0; between same sender and

13. protected void process(final Object msg) {

receiver

14. if (STOP_MSG.equals(msg)) {

15.
16.
17 L]

18.
19.} } }

println("Message-" + messageCount + ": terminating.”);

exit(); // never forget to terminate an actor
else {
messageCount += 1;

println("Message-" + messageCount + + msqg);

38

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #9 solution:
Interaction between finish and actors

What would happen if the end-finish operation from slide 29 was
moved from line 13 to line 11 as shown below?

1. finish {

2. int numThreads = 4;

3. int numberOfHops = 10;

4. ThreadRingActor[] ring = new ThreadRingActor[numThreads];
5. for(int i=numThreads-1;i>=0; i--) {
6. ring[i] = new ThreadRingActor(i);
7. ring[i].start();

8. if (i < numThreads - 1) {

9. ring[i] .nextActor(ring[i + 1]);
10. } }

11. } // finish

-
N

. ring[numThreads-1] .nextActor(ring[0]);
13. ring[0] . send (numberOfHops) ;

Deadlock: the end-finish operation in line 11 waits for all the actors
created in line 7 to terminate, but the actors are waiting for the message
sequence initiated in line 13 before they call exit()

39 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Linearizability of Concurrent Objects
(Lecture 10)

Concurrent object

A concurrent object is an object that can correctly handle
methods invoked in parallel bylin different tasks or threads

—Examples: concurrent queue, AtomicInteger

Linearizability

40

Assume that each method call takes effect “instantaneously” at
some distinct point in time between its invocation and return.

An execution is linearizable if we can choose instantaneous
points that are consistent with a sequential execution in which
methods are executed at those points

An object is linearizable if all its possible executions are
linearizable

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 1

q.en(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

41 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example 2

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

42

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #10 solution:
Linearizability of method calls on a concurrent object

Is this a linearizable execution?

Time || Task A Task B
0 Invoke q.enq(x)
1 Return from q.enq(x)
2 Invoke q.enq(y)
3 Invoke q.deq() Work on q.enq(y)
4 Work on q.deq() Return from q.enq(y)
5 Return y from q.deq()

No! q.enq(x) must precede q.enq(y) in all linear
sequences of method calls invoked on q. It is
illegal for the q.deq() operation to return y.

43 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Places in HJ (Lecture 11)

~ HJ Tasks
HJ programmer defines mapping from - l,

HJ tasks to set of places

= HJ Places
HJ runtime defines mapping from places to one \l,
or more worker Java threads per place 2 | Java Worker Threads
OS threads

The option "-places p:w" when executing an HJ
program can be used to specify _| Processor Cores
p, the number of places
w, the number of worker threads per place

44 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Places in HJ

here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) = place corresponding to index i

<place-expr>.toString() returns a string of the form "place(id=0)"

<place-expr=.id returns the id of the place as an int

async at(P) S

« Creates new task to execute statement S at place P

« async S is equivalent to async at(here) S

* Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child
task is executing, not the place where the parent task is executing

45 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example of —places 4:2 option on an 8-core
node (4 places w/ 2 workers per place)

async at(place.factory.place(l)) S3;
async at(place.factory.place(l)) S4;
async at(place.factory.place(l)) S5;

iﬂ:@rec - Core D _ \
' Place 1

// Main program starts at place O
async at(place.factory.place(0)) S1;
async at(place.factory.place(0)) S2;

/Cor'e A Core B _ \

Place O

L2 unified cache

-

v,

L1 L1 L1 L1 ii L1 L1 L1 L1
9 0T [YT i
\ L2 unified cache / :E\ L2 unified cache /
ﬁore E _ Core F \ iﬂ'@'e G _ Core H _ \
Place 2 ‘ Place 3
L1 L1 L1 L1 L1 L1 L1 L1

S

L2 unified cache

)

_async at (place.factory.place(3)) S9;

async at(place.factory.place(2)) S6;
async at(place.factory.place(3)) S10;

async at(place.factory.place(2)) S7;
async at(place.factory.place(2)) S8;

46 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example HJ program with places

1| class T1 {

2 final place affinity;

3 Coe

4 // T1’s constructor sets affinity to place where instance was created
5 T1() { affinity = here; ... }

6 Coe

7|}

8| . . .

9| finish { // Inter—place parallelism

10 System .out.println (” Parent.place.=.”, here); // Parent task s place
11 for (T1a=. . .) {

12 async at (a.affinity) { // Execute async at place with affinity to a
13 a.foo ();

14 System.out . println (” Child_place_=_”, here); // Child task’s place
15 } // async

16 } // for

17| } // finish

18 . . .

47 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

MPI: The Message Passing Interface

« Sockets and Remote Method Invocation (RMI) are communication
primitives used for distributed Java programs.

—Designed for standard TCP/IP networks rather than high-performance
interconnects

« The Message Passing Interface (MPI) standard was designed to
exploit high-performance interconnects

— MPI was standardized in the early 1990s by the MPTI Forum—a
substantial consortium of vendors and researchers

- http://www-unix.mcs.anl.gov/mpi

—1It is an APT for communication between nodes of a distributed memory
parallel computer

— The original standard defines bindings to C and Fortran (later C++)

- Java support is available from a research project, mpiJava,
developed at Indiana University 10+ years ago

http://www.hpjava.org/mpiJava.html

48 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Our First MPI Program
(mpidava version)

main() is enclosed in an
implicit “forall” --- each
process runs a separate
instance of main() with

1.import mpi.*; “index variable” = myrank

2.class Hello {

=0 N OO A W

o)

49

static public void main(String[] args) {
// Init() be called before other MPI calls
MPI.Init(args); /
int npes = MPI.COMM WORLD.Size ()

int myrank = MPI.COMM WORLD.Rank() ;

System.out.println(”"My process number is ” + myrank) ;
MPI.Finalize(); // Shutdown and clean-up

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Adding Send() and Recv() to the Minimal Set
of MPI Routines (mpiJava)

* MPI.Init(args)
—initialize MPT in each process
 MPI.Finalize()
—terminate MPI
* MPI.COMM_WORLD.Size()
—number of processes in COMM_WORLD communicator
* MPI.COMM_WORLD.Rank()
—rank of this process in COMM_WORLD communicator

* MPI.COMM_WORLD.Send() A
—send message using COMM_WORLD communicator Point-to-
- MPI.COMM_WORLD.Recv() point
commn
—receive message using COMM_WORLD communicator

A4

50 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example with Send() and Recv() calls

1.import mpi.*;

3.c1ass myProg {

4.

== = = =2 \O 00 N O O
HWN—O

= b b
0074Ch(ﬂ

19.

public static void main(String[] args) {
int tag0 = 0;

MPI.Init(args); // Start MPI computation
if (MPI.COMM WORLD.rank() == 0) { // rank 0 = sender
int loop[] = new int[1]; loop[0] = 3;
MPI.COMM WORLD.Send("Hello World'!'", 0, 12, MPI.CHAR, 1, tag0);
MPI.COMM WORLD.Send(loop, O, 1, MPI.INT, 1, tag0);
} else { // rank 1 = receiver
int loop[] = new int[l]; char msg[] = new char[1l2];

MPI.COMM WORLD.Recv(msg, 0, 12, MPI.CHAR, 0, tag0);
MPI.COMM WORLD.Recv(loop, 0, 1, MPI.INT, 0, tag0);
for (int i = 0; i < loop[0]; i++) System.out.println(msg);
}
MPI.Finalize() // Finish MPI computation
}

Send() and Recv() calls are blocking operations by default

51

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

mpidava send and receive (Lecture 12)

* Send and receive members of Comm:
void Send(Object buf, int offset, int count, Datatype type, int dst, int tag) ;

Status Recv(Object buf, int offset, int count, Datatype type, int src, int tag) ;

* The arguments buf, offset, count, type describe the data
buffer—the storage of the data that is sent or received. They
will be discussed on the next slide.

* dst is the rank of the destination process relative to this
communicator. Similarly in Recv(), src is the rank of the source
process.

* An arbitrarily chosen tag value can be used in Recv() to select
between several incoming messages: the call will wait until a
message sent with a matching tag value arrives.

* The Recv() method returns a Status value, discussed later.
* Both Send() and Recv() are blocking operations

—Analogous to Ehaser next operations
52 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

int a[], b[];

Deadlock Scenario #1

Consider:

if (MPI.COMM WORLD.rank() == 0) {
MPI.COMM WORLD.Send(a, O, 10, MPI.INT, 1, 1);
MPI.COMM WORLD.Send(b, O, 10, MPI.INT, 1, 2);

}

else {
Status s2
Status sl

= MPI.COMM WORLD.Recv(b, O, 10, MPI.INT, O, 2);
= MPI.COMM WORLD.Recv(a, 0, 10, MPI INT, O, 1);

Blocking semantics for Send() and Recv() can lead to a

deadlock.

53

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Deadlock Scenario #2

Consider the following piece of code, in which process i sends a message to
process i + 1 (modulo the number of processes) and receives a message from
process i - 1 (modulo the number of processes)

int a[], b[];

int npes = MPI.COMM WORLD.siz();

int myrank = MPI.COMM WORLD.rank()

MPI.COMM WORLD.Send(a, O, 10, MPI.INT, (myrank+l)3npes, 1);
MPI.COMM WORLD.Recv(b, 0, 10, MPI.INT, (myrank-l+npes)%npes, 1);

Once again, we have a deadlock, since Send() and Recv()
are blocking operations

54 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Non-Blocking Send and Receive operations

In order to overlap communication with computation, MPI provides a pair of
functions for performing non-blocking send and receive operations ("I"
stands for "Immediate")

The method signatures for Isend() and Irecv() are similar to those for

Send() and Recv(), except that Isend() and Irecv() return objects of type
Request:

Request Isend(Object buf, int of fset, int count, Datatype type, int dst,
int tag) ;
Request Irecv(Object buf, int offset, int count, Datatype type, int src,
int tag) ;
Function Test() tests whether or not the non-blocking send or receive
operation identified by its request has finished.
Status Test(Request request)
* Wait waits() for the operation to complete (like a future get() operation)
Status Wait(Request request)

55 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Simple Irecv() example

« The simplest way of waiting for completion of a single non-
blocking operation is to use the instance method Wait() in
the Request class, e.g:

// Post a receive operation
Request request =
Irecv(intBuf, 0, n, MPLINT, MPILANY_SOURCE, 0) ;

// Do some work while the receive is in progress

// Finished that work, now make sure the message has arrived
Status status = request.Wait() ;

// Do something with data received in intBuf

« The Wait() operation is declared to return a Status object.
In the case of a non-blocking receive operation, this object
has the same interpretation as the Status object returned
by a blocking Recv() operation.

56 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Collective Communications

« A popular feature of MPI is its family of collective
communication operations.

« Each of these operations is defined over a communicator.

— All processes in a communicator must perform the same
operation

—Implicit barrier (next)

« The simplest example is the broadcast operation: all
processes invoke the operation, all agreeing on one root
process. Data is broadcast from that root.

void Bcast(Object buf, int offset, int count, Datatype type,
int root)

- Broadcast a message from the process with rank root to all
processes of the group.

57 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

More Examples of Collective Operations

« All the following are instance methods of Intracom:

void Barrier()
- Blocks the caller until all processes in the group have called it.

void Gather(Object sendbuf, int sendoffset, int sendcount,
Datatype sendtype, Object recvbuf, int recvoffset, int recvcount,
Datatype recvtype, int root)
- Each process sends the contents of its send buffer to the root
process.

void Scatter(Object sendbuf, int sendoffset, int sendcount,
Datatype sendtype, Object recvbuf, int recvoffset, int recvcount,
Datatype recvtype, int root)

- Inverse of the operation Gather.

void Reduce(Object sendbuf, int sendoffset, Object recvbuf,
int recvoffset, int count, Datatype datatype, Op op, int root)

- Combine elements in send buffer of each process using the reduce
operation, and return the combined value in the receive buffer of

the root process.

58 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

MPI Reduce

void MPI.COMM_WORLD.Reduce(

Object(] sendbuf /* in */,
int sendoffset /* in */,
Object(] recvbuf /* out */,
int recvoffset /* in*/,
int count /* in*/,
MPI . Datatype datatype /* in*/,
MPI.Op operator /* in*/,
int root /*in*/)

MPI.COMM_WORLD.Reduce(msg, O, result, O, 1, MPI.INT, MPI.SUM, 2):

59 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

java.lang.Thread class
(a glimpse of real-world parallel programming)

« Execution of a Java program begins with an instance of Thread created
by the Java Virtual Machine (JVM) that executes the program's main()
method.

* Parallelism can be introduced by creating additional instances of class
Thread that execute as parallel threads.

1 public class Thread extends Object implements Runnable {

2 Thread() { ... } // Creates a new Thread

3 Thread (Runnable r) { ... } // Creates a new Thread with Runnable object r
4 void run() { ... } // Code to be executed by thread

5 // Case 1: If this thread was created using a Runnable object,

6 // then that object’s run method is called

7 // Case 2: If this class is subclassed, then the run() method

8 // in the subclass is called

9 void start() { ... } // Causes this thread to start execution

10 void join() { ... } // Wait for this thread to die

11 void join(long m) // Wait at most m milliseconds for thread to die
12 static Thread currentThread() // Returns currently executing thread

Listing 3: java.lang.Thread class

60 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

java.lang.Runnable interface

« Any class that implements java.lang.Runnable must provide a
parameter-less run() method with void return type

« Lines 3-7 in Listing 2 show the creation of an instance of an
anonymous inner class that implements the Runnable interface

« The computation in the run() method can be invoked sequentially
by calling r.run()

—We will see next how it can be invoked in parallel

final int len = X.length;
Runnable r = new Runnable() {
public void run() {
for(int i=0 ; i < len/2 ; i++) suml += X|[i];
}
}i

O =1 Y O s WO NS =

Listing 2: Example of creating a Java Runnable instance as a closure

61 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

start() and join() methods

* A Thread instance starts executing when its start()
method is invoked
—start() can be invoked at most once per Thread instance

—As with async, the parent thread can immediately move to the
next statement after invoking t.start()

« A t.join() call forces the invoking thread to wait till
thread t completes.

—Lower-level primitive than finish since it only waits for a
single thread rather than a collection of threads

—No restriction on which thread performs a join on which
thread, so it is possible to create a deadlock cycle using join()

—No notion of an Immediately Enclosing Finish in Java threads
—No propagation of exceptions to parent/ancestor threads

62 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Listing 4: Two-way Parallel ArraySum
using Java threads

B b

o ~1 & O s W

// Start of Task T1 (main program)
suml = 0; sum2 = 0; // Assume that suml & sum2 are fields (not local vars)
// Compute suml (lower half) and sum2 (upper half) in parallel
final int len = X.length;
Runnable rl = new Runnable() {
public void run(){ for(int i=0 ; i < len/2 ; i++) suml += X[i];}
};

Thread t1 = new Thread(rl);
tl.start ();
Runnable r2 = new Runnable() {
public void run(){ for(int i=len/2 ; i < len ; i++4+) sum2 += X[i];}
}s

Thread t2 = new Thread (r2);

t2.start ();

// Wait for threads tl and t2 to complete
tl.join(); t2.join();

int sum = suml + sum?2;

63 CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Acknowledgments

Grutors
— Matt Prince
—Mary Rachel Stimson

Rice Habanero Research
group members

—Vincent Cave

Have a

great fall
break!!

— Shams Imam

Guest lecturer
—Prof. Melissa O'Neil

Administrative assistant
—Joyce Greene

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

