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Recap of Lecture 1

• Introduction

• Async-Finish Parallel Programming

• Computation Graphs

• Abstract Performance Metrics

• Parallel Array Sum
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Worksheet #1 Solution: Insert finish to get correct 
Two-way Parallel Array Sum program 

1.  // Start of Task T0 (main program)

2.  sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3.  finish {

4.    async { // Task T1 computes sum of upper half of array

5.      for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

6.    }

7.    // T0 computes sum of lower half of array

8.    for(int i=0; i < X.length/2; i++) sum1 += X[i];

9.  }

10. // Task T0 waits for Task T1 (join)

11. return sum1 + sum2;
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Worksheet #2 solution: what is the critical 
path length and ideal speedup of this graph?

• Assume time(N) = 1 for all nodes in this graph

WORK(G) = 18

CPL(G) = 9

Ideal Speedup = 2
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Outline of Today’s Lecture

• Parallel Array Sum (contd)

• Speedup, Efficiency, Amdahl’s Law

• Understanding Data and Control Flow between an 
Async Task and its Parent

• Data Races and Determinism
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Reduction Tree Schema for computing 
Array Sum in parallel

Observations:

• This algorithm overwrites X (make a copy if X is needed later)

• stride = distance between array subscript inputs for each addition
• size = number of additions that can be executed in parallel in each 

level (stage)
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Parallel Program that satisfies dependences 
in Reduction Tree schema (for X.length = 8)

finish { // STAGE 1: stride = 1, size = 4 parallel 
additions

  async X[0]+=X[1]; async X[2]+=X[3]; 

  async X[4]+=X[5]; async X[6]+=X[7]; 

}

finish { // STAGE 2: stride = 2, size = 2 parallel 
additions

  async X[0]+=X[2]; async X[4]+=X[6]; 

}

finish { // STAGE 3: stride = 4, size = 1 parallel 
addition

  async X[0]+=X[4]; 

}
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Computation Graph for ArraySum1
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Generalization to arbitrary sized arrays
(ArraySum1)

1. for ( int stride = 1; stride < X.length ; stride *= 2 ) {

2.   // Compute size = number of additions to be performed

3.   int size=ceilDiv(X.length,2*stride);

4.   finish for(int i = 0; i < size; i++)

5.     async {

6.       if ( (2*i+1)*stride < X.length )

7.         X[2*i*stride]+=X[(2*i+1)*stride]; 

8.     } // finish-for-async

9. } // for

10. 

11. // Divide x by y, round up to next largest int

12. static int ceilDiv(int x, int y) { return (x+y-1) / y; }
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Recap of Big-O notation

• We say that a cost function Cost(n) is “order f(n)”, or 
simply “O(f (n))” (read “Big-O of f (n))”) if
—Cost-X(n) < factor * f (n), for sufficiently large n, for 
some constant factor

• Examples:
—Cost-A(n) = 2*n3 + n2 + 1 Cost-A is O(n3)
—Cost-B(n) = 3*n2 + 10  Cost-B is O(n2)
—Cost-C(n) = 2n   Cost-C is O(2n)

• Since big-O analysis does not care about differences 
within a constant factor, you can just use a unit cost as a 
stand-in for a constant number of operations
— Idea behind HJ’s abstract performance metrics
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Well-known "Complexity Classes"

• O (1)	
 	
 constant-time        (head, tail)

• O (log n)	
	
 logarithmic      (binary search)

• O (n)	
 	
 linear    (vector multiplication)

• O (n * log n) 	
 "n logn"                (sorting)

• O (n2)	
 	
 quadratic      (matrix addition)

• O (n3)	
 	
 cubic    (matrix multiplication)

• nO(1)	
 	
 polynomial         (…many! …)

• 2O(n)	
 	
 exponential (guess password)
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Complexity Analysis of ArraySum1
• Define n = X.length

• Assume that each addition takes 1 unit of time
—Ignore all other computations since they are related to the addition 

by some constant

• Total number of additions, WORK = n-1 = O(n)

• Critical path length (number of stages), CPL = O(log(n))

• Ideal parallelism = WORK/CPL = O(n) / O(log(n))

• Execution time on P processors
—Use upper bound from Lecture 1 to get 
—TP = O(WORK/P + CPL) = O(n/P + log(n))
—Speedup on P processors = T1/TP = O(n) / O(n/P + log(n))
—Algorithm is optimal for P = n / log(n), or fewer, processors – why?
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Refining the complexity analysis with a 
pre-pass for sequential partial sums

1. // Start of pre-pass: compute P partial sums in parallel

2. finish for(int j = 0; j < P; j++) // Create P tasks

3.    async { 

4.      // Compute sum of A[j],A[j+P],... in task (processor) j

5.      // Any other decomposition into P partial sums is fine too

6.      for(int i = j; i < A.length; i += P) X[j] += A[i]; 

7.    } // finish-for-async

8. // End of pre-pass: now X[0..P-1] has P partial sums of array A

9. // Use ArraySum1 algorithm (slide 5) to obtain total sum

Complexity analysis

• Parallel time on P processors for lines 1-7 = O(N/P), where N = A.length

• Parallel time for adding P partial sums on P processors = O(log P)

• Total parallel time, T(N,P) = O(N/P + log P)
• Better estimate than O(N/P + log N) from previous slide

That was fun!  Let’s do 
another complexity 
analysis in worksheet #1!
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Generalized Array Reductions
• ArraySum1 can easily be adapted to reduce any associative 

function f
—f(x,y) is said to be associative if f(a,f(b,c)) = f(f(a,b),c) for any 

inputs a, b, and c

• Sequential reduction of X, an array of objects of type T:

	
 T result=X[0]; 

	
 for(int i=1 ; i < X.length ; i++ ) result=f(result,X[i]);

• Generalized reductions have many interesting applications in 
practice, as you will see when we learn about Google’s Map 
Reduce framework

• Execution time of f() could be much larger than an integer add, 
and justify the use of an async
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Extension of ArraySum1 to reduce an 
arbitrary associative function, f

1. for ( int stride = 1; stride < X.length ; stride *= 2 ) {

2.   // Compute size = number of additions to be performed

3.   int size=ceilDiv(X.length,2*stride);

4.   finish for(int i = 0; i < size; i++)

5.     async {

6.       if ( (2*i+1)*stride < X.length )

7.         X[2*i*stride] = f(X[2*i*stride], X[(2*i+1)*stride]); 

8.     } // finish-for-async

9. } // for

10. 

11. // Divide x by y, round up to next largest int

12. static int ceilDiv(int x, int y) { return (x+y-1) / y; }
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Example of Generalized Reduction: 
WordCount

“abc” 3
“def” 4

“def” 2
“ghi” 1

“def” 3
“jkl” 2

“abc” 1
“mno” 2

“jkl” 1
“mno” 1

“abc” 4
“ghi” 3

“abc” 1
“def” 2

“def” 3
“mno” 4

“abc” 3
“def” 6

“ghi” 1

“abc” 1
“def” 3

“jkl” 2

“mno” 2
“abc” 4
“def” 9

“ghi” 1

“jkl” 2

“mno” 2

“abc” 4
“ghi” 3

“jkl” 1

“mno” 1

“abc” 1
“def” 5

“mno” 4

“abc” 5
“def” 5

“ghi” 3

“jkl” 1

“mno” 5
“abc” 9
“def” 14

“ghi” 4

“jkl” 3

“mno” 7
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Outline of Today’s Lecture

• Parallel Array Sum (contd)

• Speedup, Efficiency, Amdahl’s Law

• Understanding Data and Control Flow between an 
Async Task and its Parent

• Data Races and Determinism
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Speedup Definitions
• Speedup(N,P) = T(N,1)/T(N,P)

—Factor by which the use of P processors speeds up execution time 
relative to 1 processor, for input size N

• Strong scaling
—Goal is linear speedup for a given input size 

– When Speedup(N,P) = k*P, for some constant k, 0 < k < 1
—For ideal executions without overhead, 1 <= Speedup(P) <= P
—In practice, we may also see

– Speedup(P) < 1 (slowdown)
– Speedup(P) > P (super-linear speedup)

• Weak scaling
—Increase problem size to use processors more efficiently
—Define Weak-Speedup(N(P),P) = T(N(P),1)/T(N(P),P), where input size 

N(P) increases with P

18



CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)19

ArraySum: Speedup as function of P
• Speedup(N,P) = T(N,1)/T(N,P) = N/(N/P + log2(min(P,N)))

• Asymptotically, Speedup(N,P) --> N/log2N, as P --> infinity

P
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Efficiency Metrics
• Efficiency(P) = Speedup(P)/ P = T1/(P * TP)

—Processor efficiency --- figure of merit that indicates how well a 
parallel program uses available processors

—For ideal executions without overhead, 1/P <= Efficiency(P) <= 1

• Half-performance metric
—N1/2 = input size that achieves Efficiency(P) = 0.5 for a given P
—Figure of merit that indicates how large an input size is needed to 

obtain efficient parallelism
—A larger value of N1/2 indicates that the problem is harder to 

parallelize efficiently
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ArraySum: Efficiency as function of P
• Common approach: choose largest number of processors that 

delivers efficiency above a given limit e.g., 50%
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Amdahl’s Law [1967]
• If q ≤ 1 is the fraction of WORK in a parallel program that must be 

executed sequentially for a given input size N, then the best speedup 
that can be obtained for that program is Speedup(N,P) ≤ 1/q.

• Observation follows directly from critical path length lower bound on 
parallel execution time
—  CPL >= q * T(N,1)
—  T(N,P) >= q * T(N,1) 
—  Speedup(N,P) = T(N,1)/T(N,P) <= 1/q

• This upper bound on speedup simplistically assumes that work in program 
can be divided into sequential and parallel portions
— Sequential portion of WORK = q

– also denoted as fS (fraction of sequential work)

— Parallel portion of WORK = 1-q

– also denoted as fp (fraction of parallel work)

• Computation graph is more general and takes dependences into account
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Illustration of Amdahl’s Law:
Best Case Speedup as function of Parallel Portion

Figure source: http://en.wikipedia.org/wiki/Amdahl’s law

(log scale)
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Outline of Today’s Lecture

• Parallel Array Sum (contd)

• Speedup, Efficiency, Amdahl’s Law

• Understanding Data and Control Flow between an 
Async Task and its Parent

• Data Races and Determinism

24
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How can an Async Task interact with its 
Parent Task?

• Data flow
—Async task can read from static fields, objects, arrays, and local 

variables written by parent task
– Same rule as method calls, except that parent’s local variables are 

passed as implicit parameters
— Async task can write to static fields, objects, arrays (but not parent’s 

local variables) to be read by parent task after end-finish
– Same rule as method calls, except that method calls also have return 

values
– We will learn soon about an extension to asyncs with return values 

(futures)

• Control flow
—Async task can execute a return statement (different from method return)
— Async task can throw an exception
—NOTE: break/continue cannot cross async boundaries

25
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static
fields

SHARED

Local vars

PRIVATE

heap
data: 

objects,
arrays

SHARED

Local vars

PRIVATE

Shared and Private data in
Java’s Storage Model

Java’s storage model contains three memory regions:

1. Static Data: region of memory reserved for variables 
that are not allocated or destroyed during a class’ 
lifetime, such as static fields.
•  Static fields can be shared among threads/tasks

2. Heap Data: region of memory for dynamically 
allocated objects and arrays (created by “new”).
• Heap data can be shared among threads/tasks

3. Stack Data: Each time you call a method, Java 
allocates a new block of memory called a stack frame 
to hold its local variables 
• Local variables are private to a given thread/task

All references (pointers) must point to heap data --- no 
references can point to static or stack data . . . 

26



CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Data Flow: Use of Static Fields to Communicate Return 
Value from an Async Tasks (Poor Programming Practice)

1.  static int sum1 = 0, sum2 = 0;

2.  public static void main(String[] argv) { // caller

3.    int[] X = new int[...];

4.    ... // Initialize X

5.    int sum;

6.    finish { // Async’s have same access rules as methods

7.      async for(int i=X.length/2; i < X.length; i++)

8.              sum2 += X[i];

9.      async for(int i=0; i < X.length/2; i++)

10.             sum1 += X[i];

11.    }

12.    sum = sum1 + sum2; 

13.    ....

14.  }
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Data Flow: Use of an Object to Communicate Return 
Values from Async Tasks (Preferred Approach)

1.   public class TwoIntegers {int sum1; int sum2;}

2.   . . .

3.    public static void main(String[] argv) { // caller

4.    int[] X = new int[...]; ... // Initialize X

5.    int sum;

6.    TwoIntegers r = new TwoIntegers();

7.    finish { // Async’s have same access rules as methods

8.      async for(int i=X.length/2; i < X.length; i++)

9.              r.sum2 += X[i];

10.     async for(int i=0; i < X.length/2; i++)

11.             r.sum1 += X[i];

12.    } 

13.    sum = r.sum1 + r.sum2;

14.    ....

15.  }
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Control Flow: Semantics of HJ return 
statement

• Java semantics for return
—Return from enclosing method

• HJ semantics for return statement
—Return from immediately enclosing async or method

1.void foo() {

2.  if (...) return; // Returns from method foo()

3.  async { ... return; ... } // Returns from async

4.  . . .

5.}

29



CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Control Flow: Semantics of HJ break 
and continue statements

• Java semantics for break/continue
— Perform appropriate action for innermost enclosing loop (or labeled loop)
— It’s an error to execute a break/continue statement without an enclosing loop

• HJ semantics for break/continue
— It’s also an error to execute a break/continue statement in an async without 

an enclosing loop in the same async
— Cryptic error message from HJ compiler

– “Target of branch statement not found”

1. void foo() {

2.   while (...) {

3.     async { 

4.       while (...) { ... break; ... } // Okay

5.       break; // Error --- does not relate to while loop in line 2

6.     } } }
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Examples of Common Errors made by
beginner HJ Programmers

1.  finish for (int i = 0; i <= N - M; i++) {

2.    int j;

3.    async {

4.      for (j = 0; j < M; j++) {

5.      async {

6.        if (text[i+j] != pattern[j]) break;

7.      }

8.      if (j == M) return i;// found at offset i

9.    }

10. }

31

Async cannot 
modify local variable in 

parent’s scope

No loop 
enclosing break 

in async

Return statement 
in basic async task cannot take 

a value
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Async-Finish Exception Semantics
• Exceptions thrown by multiple async’s are accumulated into a 

“MultipleExceptions” collection at their Immediately Enclosing Finish 
1.  try {

2.    finish for (int i = 0; i < size; i++) 

3.      async {

4.        // Add explicit ArrayIndexOutOfBoundsException with X[-1]

5.        X[2*i*step] += X[(2*i+1)*step] + X[-1];

6.      } // finish-for-async

7.    } // try

8.  catch (Throwable t) {

9.     if (t instanceof hj.lang.MultipleExceptions)

10.      ... // Process the collection, t.exceptions

11.    else // single exception

12.      ... // Process t

13. }
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Outline of Today’s Lecture

• Parallel Array Sum (contd)

• Speedup, Efficiency, Amdahl’s Law

• Understanding Data and Control Flow between an 
Async Task and its Parent

• Data Races and Determinism
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Example of Incorrect Parallel Program in 
Homework 0 (Problem 1.2)

1. // Sequential version
2. for ( p = first; p != null; p = p.next) p.x = p.y + p.z;
3. for ( p = first; p != null; p = p.next) sum += p.x;
4.  
5. // Incorrect parallel version
6. for ( p = first; p != null; p = p.next) 
7.     async p.x = p.y + p.z;
8. for ( p = first; p != null; p = p.next) 
9.     sum += p.x;

   

Why is the parallel version incorrect?

Data race between write of p.x in line 7 and read of p.x in line 9 !
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Formal Definition of Data Races
	
 Formally, a data race occurs on location L in a program 

execution with computation graph CG if there exist steps 
(nodes) S1 and S2 in CG such that:
1. S1 does not depend on S2 and S2 does not depend on S1 i.e., 

there is no path of dependence edges from S1 to S2 or from S2 
to S1 in CG, and

2. Both S1 and S2 read or write L, and at least one of the accesses 
is a write.

	
 Data races are challenging because of
• Nondeterminism: different executions of the parallel program with 

the same input may result in different outputs.

• Debugging and Testing: it is usually impossible to guarantee that all 
possible orderings of the accesses to a location will be encountered 
during program debugging and testing.
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Relating Data Races and Determinism

• A parallel program is said to be deterministic with respect to 
its inputs if it always computes the same answer when given 
the same inputs.

• Structural Determinism Property
—If a parallel program is written using the constructs in Module 1 and is 

guaranteed to be race-free, then it must be deterministic with respect 
to its inputs. The final computation graph is also guaranteed to be the 
same for all executions of the program with the same inputs.

• Constructs introduced in Module 1 (“Deterministic Shared-
Memory Parallelism”) include async, finish, finish 
accumulators, futures, data-driven tasks (async await), 
forall, barriers, phasers, and phaser accumulators. 
—The notable exceptions are critical sections, isolated statements, and 

actors, all of which will be covered in Module 2 (“Nondeterministic 
Shared-Memory Parallelism”)
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Worksheet #1: Complexity analysis of k-way 
Parallel Array Sum algorithm

•  Consider a k-way parallel array-sum algorithm, where 1 <= k <= n
• Compute k partial sums in parallel, each of size n/k
• Sequentially combine the k partial sums into a single sum

•  Total number of additions, WORK = k (n/k -1) + k = O(n)

• What is the critical path length? 
—CPL = 

• What value of k gives the smallest value of CPL?
—Optimal value of k = 

37

Your name: _________________________


