
CS 181E: Fundamentals of
Parallel Programming

Instructor: Vivek Sarkar
Co-Instructor: Ran Libeskind-Hadas

http://www.cs.hmc.edu/courses/2012/fall/cs181e/

CS 181E Lecture 2 10 September 2012

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Recap of Lecture 1

• Introduction

• Async-Finish Parallel Programming

• Computation Graphs

• Abstract Performance Metrics

• Parallel Array Sum

2

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #1 Solution: Insert finish to get correct
Two-way Parallel Array Sum program

1. // Start of Task T0 (main program)

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. finish {

4. async { // Task T1 computes sum of upper half of array

5. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

6. }

7. // T0 computes sum of lower half of array

8. for(int i=0; i < X.length/2; i++) sum1 += X[i];

9. }

10. // Task T0 waits for Task T1 (join)

11. return sum1 + sum2;

3

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)4

Worksheet #2 solution: what is the critical
path length and ideal speedup of this graph?

• Assume time(N) = 1 for all nodes in this graph

WORK(G) = 18

CPL(G) = 9

Ideal Speedup = 2

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline of Today’s Lecture

• Parallel Array Sum (contd)

• Speedup, Efficiency, Amdahl’s Law

• Understanding Data and Control Flow between an
Async Task and its Parent

• Data Races and Determinism

5

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)6

Reduction Tree Schema for computing
Array Sum in parallel

Observations:

• This algorithm overwrites X (make a copy if X is needed later)

• stride = distance between array subscript inputs for each addition
• size = number of additions that can be executed in parallel in each

level (stage)

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)7

Parallel Program that satisfies dependences
in Reduction Tree schema (for X.length = 8)

finish { // STAGE 1: stride = 1, size = 4 parallel
additions

 async X[0]+=X[1]; async X[2]+=X[3];

 async X[4]+=X[5]; async X[6]+=X[7];

}

finish { // STAGE 2: stride = 2, size = 2 parallel
additions

 async X[0]+=X[2]; async X[4]+=X[6];

}

finish { // STAGE 3: stride = 4, size = 1 parallel
addition

 async X[0]+=X[4];

}

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)8

Computation Graph for ArraySum1

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)9

Generalization to arbitrary sized arrays
(ArraySum1)

1. for (int stride = 1; stride < X.length ; stride *= 2) {

2. // Compute size = number of additions to be performed

3. int size=ceilDiv(X.length,2*stride);

4. finish for(int i = 0; i < size; i++)

5. async {

6. if ((2*i+1)*stride < X.length)

7. X[2*i*stride]+=X[(2*i+1)*stride];

8. } // finish-for-async

9. } // for

10.

11. // Divide x by y, round up to next largest int

12. static int ceilDiv(int x, int y) { return (x+y-1) / y; }

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)10

Recap of Big-O notation

• We say that a cost function Cost(n) is “order f(n)”, or
simply “O(f (n))” (read “Big-O of f (n))”) if
—Cost-X(n) < factor * f (n), for sufficiently large n, for
some constant factor

• Examples:
—Cost-A(n) = 2*n3 + n2 + 1 Cost-A is O(n3)
—Cost-B(n) = 3*n2 + 10 Cost-B is O(n2)
—Cost-C(n) = 2n Cost-C is O(2n)

• Since big-O analysis does not care about differences
within a constant factor, you can just use a unit cost as a
stand-in for a constant number of operations
— Idea behind HJ’s abstract performance metrics

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)11

Well-known "Complexity Classes"

• O (1)	
 	
 constant-time (head, tail)

• O (log n)	
	
 logarithmic (binary search)

• O (n)	
 	
 linear (vector multiplication)

• O (n * log n) 	
 "n logn" (sorting)

• O (n2)	
 	
 quadratic (matrix addition)

• O (n3)	
 	
 cubic (matrix multiplication)

• nO(1)	
 	
 polynomial (…many! …)

• 2O(n)	
 	
 exponential (guess password)

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)12

Complexity Analysis of ArraySum1
• Define n = X.length

• Assume that each addition takes 1 unit of time
—Ignore all other computations since they are related to the addition

by some constant

• Total number of additions, WORK = n-1 = O(n)

• Critical path length (number of stages), CPL = O(log(n))

• Ideal parallelism = WORK/CPL = O(n) / O(log(n))

• Execution time on P processors
—Use upper bound from Lecture 1 to get
—TP = O(WORK/P + CPL) = O(n/P + log(n))
—Speedup on P processors = T1/TP = O(n) / O(n/P + log(n))
—Algorithm is optimal for P = n / log(n), or fewer, processors – why?

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)13

Refining the complexity analysis with a
pre-pass for sequential partial sums

1. // Start of pre-pass: compute P partial sums in parallel

2. finish for(int j = 0; j < P; j++) // Create P tasks

3. async {

4. // Compute sum of A[j],A[j+P],... in task (processor) j

5. // Any other decomposition into P partial sums is fine too

6. for(int i = j; i < A.length; i += P) X[j] += A[i];

7. } // finish-for-async

8. // End of pre-pass: now X[0..P-1] has P partial sums of array A

9. // Use ArraySum1 algorithm (slide 5) to obtain total sum

Complexity analysis

• Parallel time on P processors for lines 1-7 = O(N/P), where N = A.length

• Parallel time for adding P partial sums on P processors = O(log P)

• Total parallel time, T(N,P) = O(N/P + log P)
• Better estimate than O(N/P + log N) from previous slide

That was fun! Let’s do
another complexity
analysis in worksheet #1!

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)14

Generalized Array Reductions
• ArraySum1 can easily be adapted to reduce any associative

function f
—f(x,y) is said to be associative if f(a,f(b,c)) = f(f(a,b),c) for any

inputs a, b, and c

• Sequential reduction of X, an array of objects of type T:

	
 T result=X[0];

	
 for(int i=1 ; i < X.length ; i++) result=f(result,X[i]);

• Generalized reductions have many interesting applications in
practice, as you will see when we learn about Google’s Map
Reduce framework

• Execution time of f() could be much larger than an integer add,
and justify the use of an async

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)15

Extension of ArraySum1 to reduce an
arbitrary associative function, f

1. for (int stride = 1; stride < X.length ; stride *= 2) {

2. // Compute size = number of additions to be performed

3. int size=ceilDiv(X.length,2*stride);

4. finish for(int i = 0; i < size; i++)

5. async {

6. if ((2*i+1)*stride < X.length)

7. X[2*i*stride] = f(X[2*i*stride], X[(2*i+1)*stride]);

8. } // finish-for-async

9. } // for

10.

11. // Divide x by y, round up to next largest int

12. static int ceilDiv(int x, int y) { return (x+y-1) / y; }

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)16

Example of Generalized Reduction:
WordCount

“abc” 3
“def” 4

“def” 2
“ghi” 1

“def” 3
“jkl” 2

“abc” 1
“mno” 2

“jkl” 1
“mno” 1

“abc” 4
“ghi” 3

“abc” 1
“def” 2

“def” 3
“mno” 4

“abc” 3
“def” 6

“ghi” 1

“abc” 1
“def” 3

“jkl” 2

“mno” 2
“abc” 4
“def” 9

“ghi” 1

“jkl” 2

“mno” 2

“abc” 4
“ghi” 3

“jkl” 1

“mno” 1

“abc” 1
“def” 5

“mno” 4

“abc” 5
“def” 5

“ghi” 3

“jkl” 1

“mno” 5
“abc” 9
“def” 14

“ghi” 4

“jkl” 3

“mno” 7

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline of Today’s Lecture

• Parallel Array Sum (contd)

• Speedup, Efficiency, Amdahl’s Law

• Understanding Data and Control Flow between an
Async Task and its Parent

• Data Races and Determinism

17

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Speedup Definitions
• Speedup(N,P) = T(N,1)/T(N,P)

—Factor by which the use of P processors speeds up execution time
relative to 1 processor, for input size N

• Strong scaling
—Goal is linear speedup for a given input size

– When Speedup(N,P) = k*P, for some constant k, 0 < k < 1
—For ideal executions without overhead, 1 <= Speedup(P) <= P
—In practice, we may also see

– Speedup(P) < 1 (slowdown)
– Speedup(P) > P (super-linear speedup)

• Weak scaling
—Increase problem size to use processors more efficiently
—Define Weak-Speedup(N(P),P) = T(N(P),1)/T(N(P),P), where input size

N(P) increases with P

18

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)19

ArraySum: Speedup as function of P
• Speedup(N,P) = T(N,1)/T(N,P) = N/(N/P + log2(min(P,N)))

• Asymptotically, Speedup(N,P) --> N/log2N, as P --> infinity

P

Speedup(N,P)

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1" 2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Speedup"(N=1024)" Speedup"(N=2048)"

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Efficiency Metrics
• Efficiency(P) = Speedup(P)/ P = T1/(P * TP)

—Processor efficiency --- figure of merit that indicates how well a
parallel program uses available processors

—For ideal executions without overhead, 1/P <= Efficiency(P) <= 1

• Half-performance metric
—N1/2 = input size that achieves Efficiency(P) = 0.5 for a given P
—Figure of merit that indicates how large an input size is needed to

obtain efficient parallelism
—A larger value of N1/2 indicates that the problem is harder to

parallelize efficiently

20

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)21

ArraySum: Efficiency as function of P
• Common approach: choose largest number of processors that

delivers efficiency above a given limit e.g., 50%

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

1" 2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Efficiency"(N=1024)" Efficiency"(N=2048)"

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)22

Amdahl’s Law [1967]
• If q ≤ 1 is the fraction of WORK in a parallel program that must be

executed sequentially for a given input size N, then the best speedup
that can be obtained for that program is Speedup(N,P) ≤ 1/q.

• Observation follows directly from critical path length lower bound on
parallel execution time
— CPL >= q * T(N,1)
— T(N,P) >= q * T(N,1)
— Speedup(N,P) = T(N,1)/T(N,P) <= 1/q

• This upper bound on speedup simplistically assumes that work in program
can be divided into sequential and parallel portions
— Sequential portion of WORK = q

– also denoted as fS (fraction of sequential work)

— Parallel portion of WORK = 1-q

– also denoted as fp (fraction of parallel work)

• Computation graph is more general and takes dependences into account

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)23

Illustration of Amdahl’s Law:
Best Case Speedup as function of Parallel Portion

Figure source: http://en.wikipedia.org/wiki/Amdahl’s law

(log scale)

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline of Today’s Lecture

• Parallel Array Sum (contd)

• Speedup, Efficiency, Amdahl’s Law

• Understanding Data and Control Flow between an
Async Task and its Parent

• Data Races and Determinism

24

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

How can an Async Task interact with its
Parent Task?

• Data flow
—Async task can read from static fields, objects, arrays, and local

variables written by parent task
– Same rule as method calls, except that parent’s local variables are

passed as implicit parameters
— Async task can write to static fields, objects, arrays (but not parent’s

local variables) to be read by parent task after end-finish
– Same rule as method calls, except that method calls also have return

values
– We will learn soon about an extension to asyncs with return values

(futures)

• Control flow
—Async task can execute a return statement (different from method return)
— Async task can throw an exception
—NOTE: break/continue cannot cross async boundaries

25

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

static
fields

SHARED

Local vars

PRIVATE

heap
data:

objects,
arrays

SHARED

Local vars

PRIVATE

Shared and Private data in
Java’s Storage Model

Java’s storage model contains three memory regions:

1. Static Data: region of memory reserved for variables
that are not allocated or destroyed during a class’
lifetime, such as static fields.
• Static fields can be shared among threads/tasks

2. Heap Data: region of memory for dynamically
allocated objects and arrays (created by “new”).
• Heap data can be shared among threads/tasks

3. Stack Data: Each time you call a method, Java
allocates a new block of memory called a stack frame
to hold its local variables
• Local variables are private to a given thread/task

All references (pointers) must point to heap data --- no
references can point to static or stack data . . .

26

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Data Flow: Use of Static Fields to Communicate Return
Value from an Async Tasks (Poor Programming Practice)

1. static int sum1 = 0, sum2 = 0;

2. public static void main(String[] argv) { // caller

3. int[] X = new int[...];

4. ... // Initialize X

5. int sum;

6. finish { // Async’s have same access rules as methods

7. async for(int i=X.length/2; i < X.length; i++)

8. sum2 += X[i];

9. async for(int i=0; i < X.length/2; i++)

10. sum1 += X[i];

11. }

12. sum = sum1 + sum2;

13.

14. }

27

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Data Flow: Use of an Object to Communicate Return
Values from Async Tasks (Preferred Approach)

1. public class TwoIntegers {int sum1; int sum2;}

2. . . .

3. public static void main(String[] argv) { // caller

4. int[] X = new int[...]; ... // Initialize X

5. int sum;

6. TwoIntegers r = new TwoIntegers();

7. finish { // Async’s have same access rules as methods

8. async for(int i=X.length/2; i < X.length; i++)

9. r.sum2 += X[i];

10. async for(int i=0; i < X.length/2; i++)

11. r.sum1 += X[i];

12. }

13. sum = r.sum1 + r.sum2;

14.

15. }

28

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Control Flow: Semantics of HJ return
statement

• Java semantics for return
—Return from enclosing method

• HJ semantics for return statement
—Return from immediately enclosing async or method

1.void foo() {

2. if (...) return; // Returns from method foo()

3. async { ... return; ... } // Returns from async

4. . . .

5.}

29

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Control Flow: Semantics of HJ break
and continue statements

• Java semantics for break/continue
— Perform appropriate action for innermost enclosing loop (or labeled loop)
— It’s an error to execute a break/continue statement without an enclosing loop

• HJ semantics for break/continue
— It’s also an error to execute a break/continue statement in an async without

an enclosing loop in the same async
— Cryptic error message from HJ compiler

– “Target of branch statement not found”

1. void foo() {

2. while (...) {

3. async {

4. while (...) { ... break; ... } // Okay

5. break; // Error --- does not relate to while loop in line 2

6. } } }

30

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Examples of Common Errors made by
beginner HJ Programmers

1. finish for (int i = 0; i <= N - M; i++) {

2. int j;

3. async {

4. for (j = 0; j < M; j++) {

5. async {

6. if (text[i+j] != pattern[j]) break;

7. }

8. if (j == M) return i;// found at offset i

9. }

10. }

31

Async cannot
modify local variable in

parent’s scope

No loop
enclosing break

in async

Return statement
in basic async task cannot take

a value

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)32

Async-Finish Exception Semantics
• Exceptions thrown by multiple async’s are accumulated into a

“MultipleExceptions” collection at their Immediately Enclosing Finish
1. try {

2. finish for (int i = 0; i < size; i++)

3. async {

4. // Add explicit ArrayIndexOutOfBoundsException with X[-1]

5. X[2*i*step] += X[(2*i+1)*step] + X[-1];

6. } // finish-for-async

7. } // try

8. catch (Throwable t) {

9. if (t instanceof hj.lang.MultipleExceptions)

10. ... // Process the collection, t.exceptions

11. else // single exception

12. ... // Process t

13. }

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline of Today’s Lecture

• Parallel Array Sum (contd)

• Speedup, Efficiency, Amdahl’s Law

• Understanding Data and Control Flow between an
Async Task and its Parent

• Data Races and Determinism

33

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)34

Example of Incorrect Parallel Program in
Homework 0 (Problem 1.2)

1. // Sequential version
2. for (p = first; p != null; p = p.next) p.x = p.y + p.z;
3. for (p = first; p != null; p = p.next) sum += p.x;
4.
5. // Incorrect parallel version
6. for (p = first; p != null; p = p.next)
7. async p.x = p.y + p.z;
8. for (p = first; p != null; p = p.next)
9. sum += p.x;

Why is the parallel version incorrect?

Data race between write of p.x in line 7 and read of p.x in line 9 !

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)35

Formal Definition of Data Races
	
 Formally, a data race occurs on location L in a program

execution with computation graph CG if there exist steps
(nodes) S1 and S2 in CG such that:
1. S1 does not depend on S2 and S2 does not depend on S1 i.e.,

there is no path of dependence edges from S1 to S2 or from S2
to S1 in CG, and

2. Both S1 and S2 read or write L, and at least one of the accesses
is a write.

	
 Data races are challenging because of
• Nondeterminism: different executions of the parallel program with

the same input may result in different outputs.

• Debugging and Testing: it is usually impossible to guarantee that all
possible orderings of the accesses to a location will be encountered
during program debugging and testing.

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Relating Data Races and Determinism

• A parallel program is said to be deterministic with respect to
its inputs if it always computes the same answer when given
the same inputs.

• Structural Determinism Property
—If a parallel program is written using the constructs in Module 1 and is

guaranteed to be race-free, then it must be deterministic with respect
to its inputs. The final computation graph is also guaranteed to be the
same for all executions of the program with the same inputs.

• Constructs introduced in Module 1 (“Deterministic Shared-
Memory Parallelism”) include async, finish, finish
accumulators, futures, data-driven tasks (async await),
forall, barriers, phasers, and phaser accumulators.
—The notable exceptions are critical sections, isolated statements, and

actors, all of which will be covered in Module 2 (“Nondeterministic
Shared-Memory Parallelism”)

36

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #1: Complexity analysis of k-way
Parallel Array Sum algorithm

• Consider a k-way parallel array-sum algorithm, where 1 <= k <= n
• Compute k partial sums in parallel, each of size n/k
• Sequentially combine the k partial sums into a single sum

• Total number of additions, WORK = k (n/k -1) + k = O(n)

• What is the critical path length?
—CPL =

• What value of k gives the smallest value of CPL?
—Optimal value of k =

37

Your name: _________________________

