
CS 181E: Fundamentals of
Parallel Programming

Instructor: Vivek Sarkar
Co-Instructor: Ran Libeskind-Hadas

http://www.cs.hmc.edu/courses/2012/fall/cs181e/

CS 181E Lecture 7 26 September 2012

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Recap of Lecture 6

• Three observations related to Forall Barriers

• Point-to-point Synchronization and Phasers

• Phasers and Forall Loops, Single statement, Phaser
Accumulators

• Signal statement and split-phase barriers

2

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #7 solution:
Left-Right Neighbor Synchronization using Phasers

COMP 322, Spring 2011 (V.Sarkar)!18

Barrier & P-2-P Sync for 1-D
Averaging!

doPhase1(i)

doPhase2(i)

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

1. finish {
2. phaser[] ph = new phaser[m+2];
3. for(point [i]:[0:m+1]) ph[i] = new phaser();
4. for(point [i] : [1:m])
5. async phased(ph[i-1]<WAIT>,ph[i]<SIG>,ph[i+1]<WAIT>) {
6. doPhase1(i);
7. next;
8. doPhase2(i);
9. }
10.}

3

Complete the phased clause below to implement the left-right
neighbor synchronization shown above

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Summary of Module 1: Deterministic
Shared-Memory Parallelism

• Serializable subset of HJ
— {async, finish, future, forasync}
—Erasure property: any HJ program written using the above constructs can

be converted to an equivalent sequential program by erasing all parallel
constructs

• Deadlock-free subset of HJ
— {next, barriers, phasers, forall, async phased} + serializable subset
—Deadlock-freedom property: any HJ program written using the above

constructs is guaranteed to never deadlock

• Deterministic subset of HJ
— {data driven futures, async await} + deadlock-free subset
—Data-race-free structural determinism property: if any HJ program

written using the above constructs is guaranteed to be data-race-free
for a given input, then it must also be deterministic for that input i.e.,
all executions with the same input must generate the same output AND
the same computation graph

4

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline of Today’s Lecture
• Critical Sections and the Isolated Statement

• Atomic Variables

5

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)6

Formal Definition of Data Races (Recap)
	
 Formally, a data race occurs on location L in a program

execution with computation graph CG if there exist steps
(nodes) S1 and S2 in CG such that:
1. S1 does not depend on S2 and S2 does not depend on S1 i.e.,

there is no path of dependence edges from S1 to S2 or from S2
to S1 in CG, and

2. Both S1 and S2 read or write L, and at least one of the accesses
is a write.

	
 However, there are many cases in practice when two tasks may
legitimately need to perform conflicting accesses to shared
locations without incurring data races
—Special cases: finish accumulators, phaser accumulators, atomic

variables
—How should conflicting accesses be handled in general?

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example of two tasks performing
conflicting accesses

1. class DoublyLinkedListNode {

2. DoublyLinkedListNode prev, next;

3. . . .

4. void delete() {

5. { // start of desired mutual exclusion region

6. this.prev.next = this.next;

7. this.next.prev = this.prev;

8. } // end of desired mutual exclusion region

9. . . .

10. }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(DoublyLinkedListNode L) {
14. finish {
15. DoublyLinkedListNode second = L.next;
16. DoublyLinkedListNode third = second.next;
17. async second.delete();
18. async third.delete(); // conflicts with previous async
19. }
20. }

7

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

How to enforce mutual exclusion?
• The predominant approach to ensure mutual exclusion proposed

many years ago is to enclose the code region in a critical
section.
—“In concurrent programming a critical section is a piece of code that

accesses a shared resource (data structure or device) that must not
be concurrently accessed by more than one thread of execution. A
critical section will usually terminate in fixed time, and a thread,
task or process will have to wait a fixed time to enter it (aka
bounded waiting). Some synchronization mechanism is required at the
entry and exit of the critical section to ensure exclusive use, for
example a semaphore.”

—Source: http://en.wikipedia.org/wiki/Critical_section

8

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

HJ isolated statement
isolated <body>

• Isolated statement identifies a critical section

• Two tasks executing isolated statements must perform them in
mutual exclusion
èWeak isolation guarantee: mutual exclusion applies to (isolated,

isolated) pairs of statement instances, but not to (isolated, non-
isolated) and (non-isolated, non-isolated) pairs of statement instances

— That’s why we call this construct “isolated” instead of “atomic”

• Isolated statements may be nested (redundant)

• Isolated statements must not contain any other parallel statement
that performs a blocking operation: finish, future get, next,
async await

—Non-blocking operations (e.g., async) are fine

• Isolated statements can never deadlock

9

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Use of isolated to fix previous example
with conflicting accesses

1. class DoublyLinkedListNode {

2. DoublyLinkedListNode prev, next;

3. . . .

4. void delete() {

5. isolated { // start of mutual exclusion region (critical section)

6. this.prev.next = this.next;

7. this.next.prev = this.prev;

8. } // end of mutual exclusion region (critical section)

9. . . .

10. }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(DoublyLinkedListNode L) {
14. finish {
15. DoublyLinkedListNode second = L.next;
16. DoublyLinkedListNode third = second.next;
17. async second.delete();
18. async third.delete();
19. }
20. }

10

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Parallel Spanning Tree Algorithm using
isolated statement

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree

4. boolean tryLabeling(V n) {
5. isolated if (parent == null) parent=n;

6. return parent == n;
7. } // tryLabeling
8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {
10. V child = neighbors[i];

11. if (child.tryLabeling(this))
12. async child.compute(); //escaping async
13. }

14. } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .

11

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure source:
http://en.wikipedia.org/wiki/Spanning_tree

Example graph
(root=1, spanning
tree edge shown
as arrow from
child to parent)

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Semantics of Exceptions and Async’s
within an Isolated Statement

1. isolated {

2. int t1 = p.x;

3. p.x++;

4. // Task execution terminates with NullPointerException

5. // if q==null (as in non-isolated case)

6. int t2 = q.x;

7. q.x--;

8. // Async creation (but not execution) is part of mutual

9. // exclusion construct. Async can logically be executed

10. // at end of isolated statement.

11. async { ... t1 ... t2 ... }

12. . . .

13. } // isolated

12

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Serialized Computation Graph for
Isolated Statements

• Model each instance of an isolated statement as a distinct step
(node) in the CG.

• Need to reason about the order in which interfering isolated
statements are executed
—Complicated because the order may vary from execution to execution

• Introduce Serialized Computation Graph (SCG) that includes a
specific ordering of all interfering isolated statements.
—SCG consists of a CG with additional serialization edges.
—Each time an isolated step, S′, is executed, we add a serialization edge

from S to S′ for each “interfering” isolated step, S
– Two isolated statements always interfere with each other
– Interference of “object-based isolated” statements depends on

object sets
—An SCG represents a set of executions in which all interfering isolated

statements execute in the same order.

13

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example of Serialized Computation Graph
with Serialization Edges for v10-v16-v11 order

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Serialization edge v10: isolated { x ++; y = 10; }
v11: isolated { x++; y = 11; }
v16: isolated { x++; y = 16; }

14

	
 Data race definition can be applied to Serialized
Computation Graphs (SCGs) just like regular CGs

— Need to consider all possible orderings of interfering
isolated statements to establish data race freedom

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Properties of isolated statements
How small or big should an isolated statement be?
• Too small è may lose invariants desired from mutual exclusion

• Too big è limits parallelism

Deadlock freedom guarantees
• Observation: no combination of the following HJ constructs can

create a deadlock cycle among tasks
—isolated + {async, finish, future, forasync, next, barriers, phasers,

forall, async phased}

• There are only two HJ constructs that can lead to deadlock
—async await (data-driven tasks)
—explicit phaser wait operation (advanced construct)

15

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Implementations of isolated statement
• isolated statements are convenient for the programmer but pose

significant challenges for the language implementation
—Implementation does not know ahead of time if two dynamic

instances of isolated statements will interfere or not

• HJ implementation used in COMP 322 takes a simple single-lock
approach to implementing isolated statements
—Entry to isolated statement is treated as an acquire()

operation on the lock
—Exit from isolated statement is treated as a release()

operation on the lock
—Though correct, this approach essentially implements isolated

statements as critical sections, thereby serializing all
interfering and non-interfering isolated statement instances

16

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Three cases of contention among
isolated statements

1. Low contention: when isolated statements are executed infrequently
— A single-lock approach as in HJ is often the best solution. No visible

benefit from other techniques because they incur overhead that is not
needed since contention is low.

2. Moderate contention (no hot spot): when the serialization of all
isolated statements in a single-lock approach limits the performance
of the parallel program due to Amdahl’s Law, but a finer-grained
approach that only serializes interfering isolated statements results
in good scalability

— Atomic variables and object-based isolation usually do well in this
scenario since the benefit obtained from reduced serialization outweighs
any extra overhead incurred.

3. High contention (one or more hot spots): when interfering isolated
statements dominate the program execution time

— Best approach in such cases is to find an alternative construct/algorithm
to isolated e.g., use of finish/phaser accumulators

17

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Object-based isolation in HJ
isolated(<object-list>) <body>

• In this case, programmer specifies list of objects for
which isolation is required

• Mutual exclusion is only guaranteed for instances of
isolated statements that have a non-empty
intersection in their object lists

—Standard isolated is equivalent to isolated(*) by
default i.e., isolation across all objects

• Implementation can choose to distinguish between
read/write accesses for further parallelism

—Current HJ implementation supports object-based
isolation, but does not exploit read/write distinction

18

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

DoublyLinkedListNode Example
revisited with Object-Based Isolation

19

1. class DoublyLinkedListNode {

2. DoublyLinkedListNode prev, next;

3. . . .

4. void delete() {

5. isolated(this.prev, this, this.next) { // object-based isolation

6. this.prev.next = this.next;

7. this.next.prev = this.prev;

8. }

9. . . .

10. }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(DoublyLinkedListNode L) {
14. finish {
15. DoublyLinkedListNode second = L.next;
16. DoublyLinkedListNode third = second.next;
17. async second.delete();
18. async third.delete();
19. }
20. }

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline of Today’s Lecture

• Critical Sections and the Isolated Statement

• Atomic Variables

20

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Atomicity in standard vs. atomic variables

• Reads and write for reference variables and primitives (except
long and double) are atomic

• Basic safety guarantee: No “out-of-thin-air” values for
references and primitives (except for long and double)

• A read always returns a value written by some task, some
time in the past (except for long and double)

• Atomic variables support compound atomic operations that go
beyond single read/write accesses

• Operations on atomic variables can be safely invoked by
parallel tasks, but (like isolated statements) they may
increase the critical path length of your parallel program

• Not a problem if the remaining parallel (non-atomic)
work is large

21

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Why reads and writes on long/double
values may be non-atomic

1. long x; // upper = lower = 0

2. async { x = 1L << 32 + 1L; } // lower=1; upper=1;

3. async { x = 2L << 32 + 2L; } // lower=2; upper=2;

4. async { System.out.println(x); }

5. // Possible output value includes

6. // 1L << 32 + 2L (lower=2, upper=1)

22

upper lower

64 bits

32 bits 32 bits

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

java.util.concurrent library

• Atomic variables
— Efficient implementations of special-case patterns of isolated statements

• Concurrent Collections:
— Queues, blocking queues, concurrent hash map, …
— Data structures designed for concurrent environments

• Executors, Thread pools and Futures
— Execution frameworks for asynchronous tasking

• Locks and Conditions
— More flexible synchronization control
— Read/write locks

• Synchronizers: Semaphore, Latch, Barrier, Exchanger, Phaser
— Tools for thread coordination

• WARNING: only a small subset of the full java.util.concurrent library can safely be
used in HJ programs
— Atomic variables are part of the safe subset
— We will study the full library later this semester as part of Java Concurrency

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

java.util.concurrent.atomic.AtomicInteger
• Constructors

— new AtomicInteger()

– Creates a new AtomicInteger with initial value 0
— new AtomicInteger(int initialValue)

– Creates a new AtomicInteger with the given initial value

• Selected methods
— int addAndGet(int delta)

– Atomically adds delta to the current value of the atomic
variable, and returns the new value

— int getAndAdd(int delta)

– Atomically returns the current value of the atomic
variable, and adds delta to the current value

• Similar interfaces available for LongInteger

24

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Summing Values from Multiple Async’s
in same Finish Scope

• How can we perform a sum on values generated by dynamic
async statements?

• Example 1: compute sum of elem values from async tasks in a
loop

finish while (...)
 async { ...; elem = ...; ...; }

• Example 2: compute sum of elem values from async tasks in a
recursive method

void visit(...)
{ ...; elem = ...; async visit(...); ...; }
... finish visit(...); ...

• One approach is to use finish-accumulators (deterministic);
another is to use atomic variables (non-deterministic by default)

25

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Solution for Examples 1 and 2
using AtomicInteger

1. import java.util.concurrent.atomic.AtomicInteger;

2. // Example 1: compute sum from async tasks in a loop

3. AtomicInteger a1 = new AtomicInteger();

4. finish while(...)

5. async { ...; elem = ...; a1.addAndGet(elem); ...; }

6. // Example 2: compute sum in a recursive method

7. AtomicInteger a2 = new AtomicInteger();

8. void visit(...)

9. { ...; elem = ...; a2.addAndGet(elem);

10. async visit(...); ...;

11. }

12. ... finish visit(...); ...

26

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Work-Sharing Pattern using AtomicInteger
1. import java.util.concurrent.atomic.AtomicInteger;

2. . . .

3. String[] X = ... ; int numTasks = ...;

4. AtomicInteger a = new AtomicInteger();

5. . . .

6. finish for (int i=0; i<numTasks; i++)

7. async {

8. do {

9. int j = a.getAndAdd(1);

10. // can also use a.getAndIncrement()

11. if (j >= X.length) break;

12. . . . // Process X[j]

13. } while (true);

14. } // finish-for-async

27

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

java.util.concurrent.AtomicInteger methods and their
equivalent isolated statements

28

Methods in java.util.concurrent.AtomicInteger class and their
equivalent HJ isolated statements. Variable v refers to an
AtomicInteger object in column 2 and to a standard non-atomic
Java object in column 3. val refers to a field of type int.

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

java.util.concurrent. AtomicReference methods and
their equivalent isolated statements

29

Methods in java.util.concurrent.AtomicReference class and their
equivalent HJ isolated statements. Variable v refers to an
AtomicReference object in column 2 and to a standard non-atomic
Java object in column 3. ref refers to a field of type Object.

AtomicReference<T> can be used to specify a type parameter.

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Parallel Spanning Tree Algorithm using
AtomicReference

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree
4. boolean tryLabeling(V n) {
5. return parent.compareAndSet(null, n);
6. } // tryLabeling
7. void compute() {
8. for (int i=0; i<neighbors.length; i++) {
9. V child = neighbors[i];
10. if (child.tryLabeling(this))
11. async child.compute(); //escaping async
12. }
13. } // compute
14.} // class V
15.. . .
16.root.parent = root; // Use self-cycle to identify root
17.finish root.compute();
18.. . .

30

CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Worksheet #8 (to be done in pairs):
Insertion of isolated for correctness

class IsolatedPRNG {
 private int seed;
 public int nextSeed() {
 int retVal;

 retVal = seed;

 seed = nextInt(retVal);

 return retVal;
 } // nextSeed()
 . . .
} // IsolatedPRNG

31

Name 1: ___________________ Name 2: ___________________

The goal of IsolatedPRNG is to implement a single Pseudo Random
Number Generator object that can be shared by multiple tasks.
Show the isolated statement(s) that you can insert in method
nextSeed() to avoid data races and guarantee proper semantics.

main() { // Pseudocode
 // Initial seed = 1
 IsolatedPRNG r = new IsolatedPRNG(1);
 async { print r.nextSeed(); ... }
 async { print r.nextSeed(); ... }
} // main()

