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Recap of Lecture 6

• Three observations related to Forall Barriers

• Point-to-point Synchronization and Phasers

• Phasers and Forall Loops, Single statement, Phaser 
Accumulators

• Signal statement and split-phase barriers
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Worksheet #7 solution: 
Left-Right Neighbor Synchronization using Phasers

COMP 322, Spring 2011 (V.Sarkar)!18 

Barrier & P-2-P Sync for 1-D 
Averaging!

doPhase1(i) 

doPhase2(i) 

 i=1   i=2    i=3    i=4    i=5    i=6    i=7    i=8 

1. finish {
2.   phaser[] ph = new phaser[m+2];
3.   for(point [i]:[0:m+1]) ph[i] = new phaser();
4.   for(point [i] : [1:m])
5.    async phased(ph[i-1]<WAIT>,ph[i]<SIG>,ph[i+1]<WAIT>) { 
6.      doPhase1(i);
7.      next;
8.      doPhase2(i);
9.    }
10.}
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Complete the phased clause below to implement the left-right 
neighbor synchronization shown above
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Summary of Module 1: Deterministic 
Shared-Memory Parallelism

• Serializable subset of HJ
— {async, finish, future, forasync}
—Erasure property: any HJ program written using the above constructs can 

be converted to an equivalent sequential program by erasing all parallel 
constructs

• Deadlock-free subset of HJ
— {next, barriers, phasers, forall, async phased} + serializable subset
—Deadlock-freedom property: any HJ program written using the above 

constructs is guaranteed to never deadlock

• Deterministic subset of HJ
— {data driven futures, async await} + deadlock-free subset
—Data-race-free structural determinism property: if any HJ program 

written using the above constructs is guaranteed to be data-race-free 
for a given input, then it must also be deterministic for that input i.e., 
all executions with the same input must generate the same output AND 
the same computation graph 

4



CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Outline of Today’s Lecture
• Critical Sections and the Isolated Statement

• Atomic Variables
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Formal Definition of Data Races (Recap)
	
 Formally, a data race occurs on location L in a program 

execution with computation graph CG if there exist steps 
(nodes) S1 and S2 in CG such that:
1. S1 does not depend on S2 and S2 does not depend on S1 i.e., 

there is no path of dependence edges from S1 to S2 or from S2 
to S1 in CG, and

2. Both S1 and S2 read or write L, and at least one of the accesses 
is a write.

	
 However, there are many cases in practice when two tasks may 
legitimately need to perform conflicting accesses to shared 
locations without incurring data races
—Special cases: finish accumulators, phaser accumulators, atomic 

variables
—How should conflicting accesses be handled in general?



CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

Example of two tasks performing 
conflicting accesses

1.  class DoublyLinkedListNode {

2.   DoublyLinkedListNode prev, next;

3.   . . .

4.   void delete() {

5.     { // start of desired mutual exclusion region

6.       this.prev.next = this.next;

7.       this.next.prev = this.prev;

8.     } // end of desired mutual exclusion region

9.     . . .

10.  }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(DoublyLinkedListNode L) {
14.  finish {
15.    DoublyLinkedListNode second = L.next;
16.    DoublyLinkedListNode third = second.next;
17.    async second.delete();
18.    async third.delete(); // conflicts with previous async
19.  }
20. }
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How to enforce mutual exclusion?
• The predominant approach to ensure mutual exclusion proposed 

many years ago is to enclose the code region in a critical 
section. 
—“In concurrent programming a critical section is a piece of code that 

accesses a shared resource (data structure or device) that must not 
be concurrently accessed by more than one thread of execution. A 
critical section will usually terminate in fixed time, and a thread, 
task or process will have to wait a fixed time to enter it (aka 
bounded waiting). Some synchronization mechanism is required at the 
entry and exit of the critical section to ensure exclusive use, for 
example a semaphore.”

—Source: http://en.wikipedia.org/wiki/Critical_section
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HJ isolated statement 
isolated <body>

• Isolated statement identifies a critical section

• Two tasks executing isolated statements must perform them in 
mutual exclusion
èWeak isolation guarantee: mutual exclusion applies to (isolated, 

isolated) pairs of statement instances, but not to (isolated, non-
isolated) and (non-isolated, non-isolated) pairs of statement instances

— That’s why we call this construct “isolated” instead of “atomic”

• Isolated statements may be nested (redundant)

• Isolated statements must not contain any other parallel statement 
that performs a blocking operation: finish, future get, next, 
async await

—Non-blocking operations (e.g., async) are fine

• Isolated statements can never deadlock
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Use of isolated to fix previous example 
with conflicting accesses

1.  class DoublyLinkedListNode {

2.   DoublyLinkedListNode prev, next;

3.   . . .

4.   void delete() {

5.     isolated { // start of mutual exclusion region (critical section)

6.       this.prev.next = this.next;

7.       this.next.prev = this.prev;

8.     } // end of mutual exclusion region (critical section)

9.     . . .

10.  }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(DoublyLinkedListNode L) {
14.  finish {
15.    DoublyLinkedListNode second = L.next;
16.    DoublyLinkedListNode third = second.next;
17.    async second.delete();
18.    async third.delete();
19.  }
20. }
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Parallel Spanning Tree Algorithm using 
isolated statement

1. class V  {
2.   V [] neighbors; // adjacency list for input graph
3.   V parent; // output value of parent in spanning tree

4.   boolean tryLabeling(V n) {
5.     isolated if (parent == null) parent=n;

6.     return parent == n; 
7.   } // tryLabeling
8.   void compute() {

9.     for (int i=0; i<neighbors.length; i++) { 
10.      V child = neighbors[i];  

11.      if (child.tryLabeling(this))
12.          async child.compute(); //escaping async
13.     } 

14.  } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .
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1 2 3 4
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13 14 15 16 

Figure source: 
http://en.wikipedia.org/wiki/Spanning_tree

Example graph
(root=1, spanning 
tree edge shown 
as arrow from 
child to parent)
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Semantics of Exceptions and Async’s 
within an Isolated Statement

1.  isolated {

2.   int t1 = p.x; 

3.   p.x++;

4.   // Task execution terminates with NullPointerException 

5.   // if q==null (as in non-isolated case)

6.   int t2 = q.x; 

7.   q.x--;

8.   // Async creation (but not execution) is part of mutual

9.   // exclusion construct.  Async can logically be executed 

10.  // at end of isolated statement.  

11.  async { ... t1 ... t2 ... }

12.  . . .

13. } // isolated
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Serialized Computation Graph for 
Isolated Statements

• Model each instance of an isolated statement as a distinct step 
(node) in the CG. 

• Need to reason about the order in which interfering isolated 
statements are executed
—Complicated because the order may vary from execution to execution

• Introduce Serialized Computation Graph (SCG) that includes a 
specific ordering of all interfering isolated statements. 
—SCG consists of a CG with additional serialization edges.
—Each time an isolated step, S′, is executed, we add a serialization edge 

from S to S′ for each “interfering” isolated step, S
– Two isolated statements always interfere with each other
– Interference of “object-based isolated” statements depends on 

object sets
—An SCG represents a set of executions in which all interfering isolated 

statements execute in the same order.
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Example of Serialized Computation Graph 
with Serialization Edges for v10-v16-v11 order

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Serialization edge v10:  isolated { x ++; y = 10; } 
v11:  isolated { x++;  y = 11; } 
v16:  isolated { x++;  y = 16; } 
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 Data race definition can be applied to Serialized 
Computation Graphs (SCGs) just like regular CGs

— Need to consider all possible orderings of interfering 
isolated statements to establish data race freedom
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Properties of isolated statements
How small or big should an isolated statement be?
• Too small è may lose invariants desired from mutual exclusion

• Too big è limits parallelism

Deadlock freedom guarantees
• Observation: no combination of the following HJ constructs can 

create a deadlock cycle among tasks
—isolated + {async, finish, future, forasync, next, barriers, phasers, 

forall, async phased}

• There are only two HJ constructs that can lead to deadlock
—async await (data-driven tasks)
—explicit phaser wait operation (advanced construct)

15
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Implementations of isolated statement
• isolated statements are convenient for the programmer but pose 

significant challenges for the language implementation
—Implementation does not know ahead of time if two dynamic 

instances of isolated statements will interfere or not

• HJ implementation used in COMP 322 takes a simple single-lock 
approach to implementing isolated statements
—Entry to isolated statement is treated as an acquire() 

operation on the lock
—Exit from isolated statement is treated as a release() 

operation on the lock
—Though correct, this approach essentially implements isolated 

statements as critical sections, thereby serializing all 
interfering and non-interfering isolated statement instances
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Three cases of contention among 
isolated statements

1. Low contention: when isolated statements are executed infrequently
— A single-lock approach as in HJ is often the best solution. No visible 

benefit from other techniques because they incur overhead that is not 
needed since contention is low.

2. Moderate contention (no hot spot): when the serialization of all 
isolated statements in a single-lock approach limits the performance 
of the parallel program due to Amdahl’s Law, but a finer-grained 
approach that only serializes interfering isolated statements results 
in good scalability

— Atomic variables and object-based isolation usually do well in this 
scenario since the benefit obtained from reduced serialization outweighs 
any extra overhead incurred.

3. High contention (one or more hot spots): when interfering isolated 
statements dominate the program execution time

— Best approach in such cases is to find an alternative construct/algorithm 
to isolated e.g., use of finish/phaser accumulators

17
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Object-based isolation in HJ 
isolated(<object-list>) <body>

• In this case, programmer specifies list of objects for 
which isolation is required

• Mutual exclusion is only guaranteed for instances of 
isolated statements that have a non-empty 
intersection in their object lists 

—Standard isolated is equivalent to isolated(*) by 
default i.e., isolation across all objects

• Implementation can choose to distinguish between 
read/write accesses for further parallelism

—Current HJ implementation supports object-based 
isolation, but does not exploit read/write distinction

18
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DoublyLinkedListNode Example 
revisited with Object-Based Isolation

19

1.  class DoublyLinkedListNode {

2.   DoublyLinkedListNode prev, next;

3.   . . .

4.   void delete() {

5.     isolated(this.prev, this, this.next) { // object-based isolation

6.       this.prev.next = this.next;

7.       this.next.prev = this.prev;

8.     } 

9.     . . .

10.  }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(DoublyLinkedListNode L) {
14.  finish {
15.    DoublyLinkedListNode second = L.next;
16.    DoublyLinkedListNode third = second.next;
17.    async second.delete();
18.    async third.delete();
19.  }
20. }
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Outline of Today’s Lecture

• Critical Sections and the Isolated Statement

• Atomic Variables

20
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Atomicity in standard vs. atomic variables

• Reads and write for reference variables and primitives (except 
long and double) are atomic

• Basic safety guarantee: No “out-of-thin-air” values for 
references and primitives (except for long and double)

• A read always returns a value written by some task, some 
time in the past (except for long and double)

• Atomic variables support compound atomic operations that go 
beyond single read/write accesses

• Operations on atomic variables can be safely invoked by 
parallel tasks, but (like isolated statements) they may 
increase the critical path length of your parallel program

• Not a problem if the remaining parallel (non-atomic) 
work is large

21
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Why reads and writes on long/double 
values may be non-atomic 

1. long x; // upper = lower = 0

2. async { x = 1L << 32 + 1L; } // lower=1; upper=1;

3. async { x = 2L << 32 + 2L; } // lower=2; upper=2;

4. async { System.out.println(x); }

5. // Possible output value includes

6. // 1L << 32 + 2L (lower=2, upper=1)

22

upper lower

64 bits

32 bits 32 bits
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java.util.concurrent library

• Atomic variables
— Efficient implementations of special-case patterns of isolated statements

• Concurrent Collections: 
— Queues, blocking queues, concurrent hash map, …
— Data structures designed for concurrent environments

• Executors, Thread pools and Futures
— Execution frameworks for asynchronous tasking

• Locks and Conditions
— More flexible synchronization control
— Read/write locks

• Synchronizers: Semaphore, Latch, Barrier, Exchanger, Phaser
— Tools for thread coordination

• WARNING: only a small subset of the full java.util.concurrent library can safely be 
used in HJ programs
— Atomic variables are part of the safe subset
— We will study the full library later this semester as part of Java Concurrency
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java.util.concurrent.atomic.AtomicInteger
• Constructors

— new AtomicInteger()

– Creates a new AtomicInteger with initial value 0
— new AtomicInteger(int initialValue)

– Creates a new AtomicInteger with the given initial value

• Selected methods
— int addAndGet(int delta) 

– Atomically adds delta to the current value of the atomic 
variable, and returns the new value

— int getAndAdd(int delta)

– Atomically returns the current value of the atomic 
variable, and adds delta to the current value

• Similar interfaces available for LongInteger

24
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Summing Values from Multiple Async’s 
in same Finish Scope

• How can we perform a sum on values generated by dynamic 
async statements? 

• Example 1: compute sum of elem values from async tasks in a 
loop

finish while (...) 
  async { ...; elem = ...; ...; }

• Example 2: compute sum of elem values from async tasks in a 
recursive method

void visit(...) 
{ ...; elem = ...; async visit(...); ...; }
... finish visit(...); ...

• One approach is to use finish-accumulators (deterministic); 
another is to use atomic variables (non-deterministic by default) 

25
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Solution for Examples 1 and 2 
using AtomicInteger

1.  import java.util.concurrent.atomic.AtomicInteger;

2.  // Example 1: compute sum from async tasks in a loop

3.  AtomicInteger a1 = new AtomicInteger();

4.    finish while(...) 

5.     async { ...; elem = ...; a1.addAndGet(elem); ...; }

6.  // Example 2: compute sum in a recursive method

7.  AtomicInteger a2 = new AtomicInteger();

8.  void visit(...) 

9.  { ...; elem = ...; a2.addAndGet(elem);

10.   async visit(...); ...; 

11. }

12. ... finish visit(...); ...

26
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Work-Sharing Pattern using AtomicInteger
1.  import java.util.concurrent.atomic.AtomicInteger;

2.  . . .

3.  String[] X = ... ; int numTasks = ...;

4.  AtomicInteger a = new AtomicInteger();

5.  . . .

6.  finish for (int i=0; i<numTasks; i++ ) 

7.    async {

8.      do {

9.         int j = a.getAndAdd(1); 

10.        // can also use a.getAndIncrement()

11.        if (j >= X.length) break;

12.        . . . // Process X[j]

13.      } while (true);

14.    } // finish-for-async

27



CS 181E, Fall 2012 (V.Sarkar, R.Libeskind-Hadas)

java.util.concurrent.AtomicInteger methods and their 
equivalent isolated statements

28

Methods in java.util.concurrent.AtomicInteger class and their 
equivalent HJ isolated statements.  Variable v refers to an 
AtomicInteger object in column 2 and to a standard non-atomic 
Java object in column 3.  val refers to a field of type int.
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java.util.concurrent. AtomicReference methods and 
their equivalent isolated statements

29

Methods in java.util.concurrent.AtomicReference class and their 
equivalent HJ isolated statements.  Variable v refers to an 
AtomicReference object in column 2 and to a standard non-atomic 
Java object in column 3.  ref refers to a field of type Object.

AtomicReference<T> can be used to specify a type parameter.
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Parallel Spanning Tree Algorithm using 
AtomicReference

1. class V  {
2.   V [] neighbors; // adjacency list for input graph
3.   AtomicReference parent; // output value of parent in spanning tree
4.   boolean tryLabeling(V n) {
5.     return parent.compareAndSet(null, n);
6.   } // tryLabeling
7.   void compute() {
8.     for (int i=0; i<neighbors.length; i++) { 
9.       V child = neighbors[i];  
10.      if (child.tryLabeling(this))
11.          async child.compute(); //escaping async
12.     } 
13.  } // compute
14.} // class V
15.. . .
16.root.parent = root; // Use self-cycle to identify root
17.finish root.compute();
18.. . .
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Worksheet #8 (to be done in pairs): 
Insertion of isolated for correctness

class IsolatedPRNG {
  private int seed; 
  public int nextSeed() {
    int retVal;

    retVal = seed;

    seed = nextInt(retVal);

    return retVal;
  } // nextSeed()
  . . .  
} // IsolatedPRNG

31

Name 1: ___________________          Name 2: ___________________

The goal of IsolatedPRNG is to implement a single Pseudo Random 
Number Generator object that can be shared by multiple tasks.
Show the isolated statement(s) that you can insert in method 
nextSeed() to avoid data races and guarantee proper semantics.

main() { // Pseudocode
  // Initial seed = 1
  IsolatedPRNG r = new IsolatedPRNG(1); 
  async { print r.nextSeed(); ... }
  async { print r.nextSeed(); ... }
} // main()


