Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Home

Office Hours

HJlib Info

edX site

Autograder Guide

Other Resources

COMP 322: Fundamentals of Parallel Programming (Spring

...

2023)

 


Instructors

Instructor:

Mackale Joyner, DH 2063

Zoran Budimlić, DH 3003

TAs:
Adrienne Li, Austin Hushower, Claire Xu, Diep Hoang, Hunena Badat, Maki Yu, Mantej Singh, Rose Zhang, Victor Song, Yidi Wang  Admin Assistant:Annepha Hurlock, annepha@rice.edu , DH 3122, 713-348-5186  
Mohamed Abead, Chase Hartsell, Taha Hasan, Harrison Huang, Jerry Jiang, Jasmine Lee, Michelle Lee, Hung Nguyen, Quang Nguyen, Ryan Ramos, Oscar Reynozo, Delaney Schultz, Tina Wen, Raiyan Zannat, Kailin Zhang

Piazza site:

https://piazza.com/rice/

spring2022

spring2023/comp322 (Piazza is the preferred medium for all course communications)

Cross-listing:

ELEC 323

Lecture location:

Herzstein Amphitheater

(online 1st 2 weeks)

Lecture times:

MWF 1:00pm - 1:50pm

Lab locations:

Mon (Herzstein Amp), Tue (Keck 100

(online 1st 2 weeks

)

Lab times:

Mon  3:00pm - 3:50pm (

Austin, Claire

Raiyan, Oscar, Mohamed, Ryan, Michelle, Taha, Jasmine)

Wed

Tue 4:

30pm

00pm -

5

4:

20pm

50pm (

Hunena

Tina,

Mantej

Delaney,

Yidi

Chase,

Victor

Hung,

Rose, Adrienne, Diep, Maki

Jerry, Kailin)

Course Syllabus

A summary PDF file containing the course syllabus for the course can be found here.  Much of the syllabus information is also included below in this course web site, along with some additional details that are not included in the syllabus.

...

The desired learning outcomes fall into three major areas:

1) Parallelism: functional programming, Java streams, creation and coordination of parallelism (async, finish), abstract performance metrics (work, critical paths), Amdahl's Law, weak vs. strong scaling, data races and determinism, data race avoidance (immutability, futures, accumulators, dataflow), deadlock avoidance, abstract vs. real performance (granularity, scalability), collective & point-to-point synchronization (phasers, barriers), parallel algorithms, systolic algorithms.

...

To ensure that students gain a strong knowledge of parallel programming foundations, the classes and homeworks homework will place equal emphasis on both theory and practice. The programming component of the course will mostly use the  Habanero-Java Library (HJ-lib)  pedagogic extension to the Java language developed in the  Habanero Extreme Scale Software Research project  at Rice University.  The course will also introduce you to real-world parallel programming models including Java Concurrency, MapReduce. An important goal is that, at the end of COMP 322, you should feel comfortable programming in any parallel language for which you are familiar with the underlying sequential language (Java or C). Any parallel programming primitives that you encounter in the future should be easily recognizable based on the fundamentals studied in COMP 322.

...

There are no required textbooks for the class. Instead, lecture handouts are provided for each module as follows.  You are expected to read the relevant sections in each lecture handout before coming to the lecture.  We will also provide a number of references in the slides and handouts.The links to the latest versions of the lecture handouts are included below:

  • Module 1 handout (Parallelism)
  • Module 2 handout (Concurrency)

...

Lecture Schedule

...

 



Week

Day

Date (

2022

2023)

Lecture

Assigned Reading

Assigned Videos (see Canvas site for video links)

In-class Worksheets

Slides

Work Assigned

Work Due

Worksheet Solutions
 

1

Mon

Jan

10

09

Lecture 1: Introduction

  



worksheet1lec1-
slides  

 

 

slides  



WS1-solution
  


Wed

Jan

12

11

Lecture 2:  Functional Programming

GList.java  


worksheet2lec02-slides

 

 

  



WS2-solution

FriJan
14
13Lecture 3: Higher order functions
 


worksheet3 
worksheet3 
lec3-
slides 
slides 
 
 
  



WS3-solution

2

Mon

Jan

17

16

No class: MLK

        

 










Wed

Jan

19

18

Lecture 4: Lazy Computation
  



worksheet4lec4-slides
 


WS4-solution
   

 

Fri



Fri

Jan 20

Jan 21

Lecture 5: Java Streams

   



worksheet5lec5-slidesHomework 1
  

WS5-solution
3MonJan
24

 

23

Lecture 6: Map Reduce with Java Streams

Module 1: Section 2.4Topic 2.4 Lecture, Topic 2.4 Demonstration  worksheet6lec6-slides

 

   



WS6-solution


Wed

Jan

26

25

Lecture 7: Futures

Module 1: Section 2.1Topic 2.1 Lecture , Topic 2.1 Demonstrationworksheet7lec7-slides

 

   

 



WS7-solution


Fri

Jan

28

27

Lecture 8:  Async, Finish, Computation Graphs

, Ideal Parallelism

Module 1: Sections 1.
2
1, 1.
3
2Topic 1.
2
1 Lecture, Topic 1.
2
1 Demonstration, Topic 1.
3
2 Lecture, Topic 1.
3
2 Demonstrationworksheet8
lec8 
lec8-slides
   


WS8-solution

4

Mon
 


Jan
31
30 Lecture 9: Ideal Parallelism, Data-Driven Tasks 

Module 1: Section 1.3, 4.5

 


Topic 1.3 Lecture, Topic 1.3 Demonstration, Topic 4.5 Lecture

   

, Topic 4.5 Demonstration

worksheet9

lec9-slides 
    


WS9-solution

WedFeb
02
01Lecture 10: Event-based programming model

   worksheet10




worksheet10lec10-slides
    

Homework 1WS10-solution
 


FriFeb
04
03Lecture 11: GUI programming as an example of event-based,
futures/callbacks in GUI programming
  


worksheet11lec11-slidesHomework 2
Homework 1  

WS11-solution
5

Mon

Feb

07

06

Lecture 12: Scheduling/executing computation graphs
Abstract performance metrics
Module 1: Section 1.4Topic 1.4 Lecture , Topic 1.4 Demonstrationworksheet12lec12-slides
    

 



WS12-solution


Wed

Feb

09

08

Lecture 13:

Lightweight task parallelism. Finish/async

Parallel Speedup, Critical Path, Amdahl's Law

Module 1: Section 1.
1
5

Topic 1.

1

5 Lecture , Topic 1.

1  

5 Demonstration

worksheet13lec13-slides 
   

WS13-solution


Fri

Feb

11

10

No class: Spring Recess

 

   

     










6

Mon

Feb

14

13

Lecture 14:

Parallel Speedup, Critical Path, Amdah's Law

Accumulation and reduction. Finish accumulators

Module 1: Section
1
2.
5
3Topic
1
2.
5
3 Lecture   Topic
1
2.
5  
3 Demonstrationworksheet14lec14-slides
    


WS14-solution


Wed

Feb
16
15

Lecture 15: Recursive Task Parallelism

  

 



worksheet15lec15-slides

 

 

   



Homework 2WS15-solution
 


FriFeb
18
17

Lecture 16:

Accumulation and reduction. Finish accumulators

Data Races, Functional & Structural Determinism

Module 1:
Section
Sections 2.
3Topic 2.3 Lecture ,
5, 2.6Topic 2.5 Lecture ,  Topic 2.5 Demonstration,  Topic 2.6 Lecture,  Topic 2.
3
6 Demonstrationworksheet16 lec16-slidesHomework 3
Homework 2  

WS16-solution

7

Mon

Feb

21

20

Lecture 17: Midterm Review

   




lec17-slides
   

 

 





Wed

Feb

23

22

Lecture 18: Limitations of Functional parallelism.
Abstract vs. real performance. Cutoff Strategy

 


worksheet18
   
lec18-slides
    


WS18-solution


Fri

Feb
25 Module 1: Sections 2.5, 2.6
24 

Lecture 19:

Data Races, Functional & Structural Determinism

Fork/Join programming model. OS Threads. Scheduler Pattern 


Topic 2.
5
7 Lecture, Topic 2.
5
7 Demonstration, Topic 2.
6
8 Lecture, Topic 2.
6
8 Demonstration, worksheet19lec19-slides
    


WS19-solution

8

Mon

Feb

28

27

Lecture 20: Confinement & Monitor Pattern. Critical sections
Global lock

Module 2: Sections 5.1, 5.2, 5.6 Topic 5.1 Lecture, Topic 5.1 Demonstration, Topic 5.2 Lecture, Topic 5.2 Demonstration, Topic 5.6 Lecture, Topic 5.6 Demonstrationworksheet20
l ec20 
lec20-slides      
    


WS20-solution


Wed

Mar

02

01

Lecture 21:

N-Body problem, applications and implementations

  Atomic variables, Synchronized statements

Module 2: Sections 5.4, 7.2

Topic 5.4 Lecture, Topic 5.4 Demonstration, Topic 7.2 Lecture
  
worksheet21lec21-slides
    

 

Fri

Mar 04

Lecture 22: Fork/Join programming model. OS Threads. Scheduler Pattern

Homework 3WS21-solution


Fri

Mar 03

Lecture 22: Parallel Spanning Tree, other graph algorithms 


 worksheet22lec22-slidesHomework 4


WS22-solution

9

Mon

Mar 06

Lecture 23: Java Threads and Locks

Module 2: Sections
2
7.1, 7
, 2
.
8
3

Topic

2

7.

7

1 Lecture, Topic

2.7 Demonstration, Topic 2.8 Lecture, Topic 2.8 Demonstration,  

7.3 Lecture

worksheet23 lec23-slides


WS23-solution


Wed

Mar 08

Lecture 24: Java Locks - Soundness and progress guarantees  

worksheet22lec22-slidesHomework 4

Homework 3

  

9

Mon

Mar 07

Lecture 23:  Locks, Atomic variables

Module 2: 7.
3
5Topic 7.
3
5 Lecture
worksheet23
worksheet24
lec23
lec24-slides
 

 

  

 

Wed

Mar 09

Lecture 24: Parallel Spanning Tree, other graph algorithms

  worksheet24 lec24-slides 

 

  

 



WS24-solution


Fri

Mar

11

10

 Lecture 25:
Linearizability of Concurrent Objects
Dining Philosophers Problem  Module 2: 7.
4
6Topic 7.
4  
6 Lectureworksheet25lec25-slides
 

 

  


WS25-solution

Mon

Mar
14
13

No class: Spring Break

     

 

  

 







WedMar
16
15No class: Spring Break
  

 

  

 

   









Fri

Mar

18

17

No class: Spring Break

 








10

 

Mon

   

 

  

10

Mon

Mar 21

Lecture 26: Java Locks - Soundness and progress guarantees

Module 2: 7.5Topic 7.5 Lecture worksheet26lec26-slides     

 

Wed

Mar 23

Lecture 27: Dining Philosophers Problem

Module 2: 7.6Topic 7.4 Lecture Topic 7.6 Lecture worksheet27lec27-slides

 

   

 

Fri

Mar 25

Lecture 28: Read-Write Pattern. Read-Write Locks. Fairness & starvation

Module 2: 7.3, 7.5Topic 7.3 Lecture, Topic 7.5 Lecture, worksheet28lec28-slides

 

 

 

  

11

Mon

Mar 28

Lecture 29

Mar 20

Lecture 26: N-Body problem, applications and implementations 



worksheet26lec26-slides

WS26-solution


Wed

Mar 22

Lecture 27: Read-Write Locks, Linearizability of Concurrent Objects

Module 2: 7.3, 7.4Topic 7.3 Lecture, Topic 7.4 Lectureworksheet27lec27-slides



WS27-solution


Fri

Mar 24

Lecture 28: Message-Passing programming model with Actors

Module 2: 6.1, 6.2Topic 6.1 Lecture, Topic 6.1 Demonstration,   Topic 6.2 Lecture, Topic 6.2 Demonstration worksheet28lec28-slides




WS28-solution

11

Mon

Mar 27

Lecture 29: Active Object Pattern. Combining Actors with task parallelism 

Module 2: 6.3, 6.4Topic 6.3 Lecture, Topic 6.3 Demonstration,   Topic 6.4 Lecture, Topic 6.4 Demonstrationworksheet29lec29-slides



WS29-solution


Wed

Mar 29

Lecture 30: Task Affinity and locality. Memory hierarchy

 

 lec29


worksheet30
worksheet29
lec30-slides

 

 

  

 

Wed

Mar 30

Lecture 30: Reactor Pattern. Web servers

  worksheet30lec30-slides

 

   

 

Fri

Apr 01

Lecture 31: Scan Pattern. Parallel Prefix Sum, uses and algorithms

  worksheet31lec31-slidesHomework 5

Homework 4

  

12

Mon

Apr 04

Lecture 32: Data-Parallel Programming model. Loop-Level Parallelism, Loop ChunkingModule


Homework 4WS30-solution


Fri

Mar 31

Lecture 31: Data-Parallel Programming model. Loop-Level Parallelism, Loop Chunking

Module 1: Sections 3.1, 3.2, 3.3
Topic 3.1 Lecture ,
Topic 3.1
Demonstration , Topic 3.2
Lecture
,  Topic 3.2 Demonstration
, Topic 3.
3 Lecture,  Topic 3.3 Demonstration
1 Demonstration , Topic 3.2 Lecture,  Topic 3.2 Demonstration, Topic 3.3 Lecture,  Topic 3.3 Demonstrationworksheet31lec31-slidesHomework 5


WS31-solution

12

Mon

Apr 03

Lecture 32: Barrier
worksheet32lec32-slides

 

 

  

 

Wed

Apr 06

Lecture 33: Barrier Synchronization with phasers

Module 1: Section 3.4

Topic 3.4 Lecture ,   Topic 3.4 Demonstration

worksheet33lec33-slides

 

   

 

Fri

Apr 08

Lecture 34:  Stencil computation. Point-to-point
Synchronization with PhasersModule 1:
Section 4
Section 3.
2,
4
.3
Topic 4.2 Lecture ,   Topic 4.2 Demonstration, Topic 4.3
Topic 3.4 Lecture,  Topic 3.4
.3
Demonstration
worksheet34
worksheet32
lec34
lec32-slides
 

 

  



WS32-solution


Wed

Apr 05

Lecture 33:  Stencil computation. Point-to-point Synchronization with Phasers

Module 1: Section 4.2, 4.3

Topic 4.2 Lecture, Topic 4.2 Demonstration, Topic 4.3 Lecture,  Topic 4.3 Demonstration

worksheet33lec33-slides



WS33-solution


Fri

Apr 07

Lecture 34: Fuzzy Barriers with Phasers

Module 1: Section 4.1Topic 4.1 Lecture, Topic 4.1 Demonstrationworksheet34lec34-slides


WS34-solution

13

Mon

Apr 10

Lecture 35: Eureka-style Speculative Task Parallelism


worksheet35lec35-slides



WS35-solution

WedApr 12Lecture 36: Scan Pattern. Parallel Prefix Sum


worksheet36lec36-slides

WS36-solution

FriApr 14Lecture 37: Parallel Prefix Sum applications

13

Mon

Apr 11

Lecture 35: Message-Passing programming model with ActorsModule 2: 6.1, 6.2

Topic 6.1 Lecture ,   Topic 6.1 Demonstration ,   Topic 6.2 Lecture, Topic 6.2 Demonstration

worksheet35lec35-slides

 

 

   WedApr 13Lecture 36: Active Object Pattern. Combining Actors with task parallelism Module 2: 6.3, 6.4

Topic 6.3 Lecture ,   Topic 6.3 Demonstration ,   Topic 6.4 Lecture, Topic 6.4 Demonstration

worksheet36lec36-slides     FriApr 15Lecture 37: Eureka-style Speculative Task Parallelism  


worksheet37lec37-slides
    




14MonApr
18
17Lecture 38: Overview of other models and frameworks
   



lec38-slides
     





WedApr
20
19Lecture 39: Course Review (Lectures 19-38)
    



lec39-slides
    

Homework 5


FriApr
22
21Lecture 40: Course Review (Lectures 19-38)
   



lec40-slides
 Homework 5  




Lab Schedule

Lab #

Date (

2022

2023)

Topic

Handouts

Examples

1

Jan

10

09

Infrastructure setup

lab0-handout

lab1-handout

 -


-Jan 16No lab this week (MLK)

2Jan 23
Jan 17-
Functional Programminglab2-handout
 

3

Jan

24

30

  

Futures

 -Jan 31  
lab3-handout


-Feb
07
06No lab this week (Spring Recess)

4

Feb 13

Data-Driven Tasks

lab4-handout

 

  -

Feb 14

 

  

-Feb
21
20No lab this week (Midterm Exam)

5

Feb 27

Async / Finish

lab5-handout
6Mar 06Recursive Task Cutoff Strategylab6-handout

 

  -Feb 28   -Mar 07   

-Mar
14-
13No lab this week (Spring Break)
  


7Mar
21
20
   -Mar 28   -

Apr 04

 

  

-

Apr 11

 

  

-

Apr 18

 

 
Java Threadslab7-handout
8Mar 27Concurrent Listslab8-handout
9Apr 03Actorslab9-handout
10

Apr 10

Loop Parallelism

lab10-handout

-

Apr 17

No lab this week

 



Grading, Honor Code Policy, Processes and Procedures

...

Labs must be submitted by the following Monday Wednesday at 114:59pm30pm.  Labs must be checked off by a TA.

Worksheets should be completed by the deadline listed in Canvas before the start of the following class (for full credit) so that solutions to the worksheets can be discussed in the next class.

...