Homework 3 (Due Monday 2/7/2011 at 10:00am)
Submit your .ss
file via OWL-Space. You will need to use the "Intermediate Student" language to do Problem 18.1.15. If you want to use explicit lambda
notation (anywhere the right hand side of a define
statement), you will need to use the "Intermediate Student with lambda" language. You may use either intermediate level language for the entire assignment if you choose.
Required problems:
- 14.2.4 [20 pts.]
Note: Be sure to compare list searching with tree searching, as the problem states. - 16.3.3 [20 pts.]
Notes:- Test every function thoroughly (5+ examples).
- Be sure to include definitions for both variations of
du-dir
. The final sentence should read "storing a file or a directory in a dir structure costs 1 storage unit." In other words, given a dir structure, each directory entry (a file or a directory) contained therein costs 1 unit of storage for the bookkeeping data. For a file, this bookkeeping overhead is in addition to the size of its data.
- 17.1.2 [20 pts.]
- 17.6.1 [20 pts.]
Do the problem as specified in the book.
Extra Credit [10 pts.]: This problem can be solved more elegantly than the solution implied in the book. For the extra credit solution ignore the book's guidance on "writing functions that consume two complex inputs" in 17.5 and follow the guidance given in class on how to write a function that processes multiple inputs. Select one input as primary (the choice may be arbitrary in some cases). If you need to deconstruct a second argument, do it in a auxiliary function. Use only one design template in each function. Hint for solving this problem: only your auxiliary function, which has a contract and purpose statement almost identical tomerge
, should be recursive (call itself directly or indirectly) and it may need to deviate slightly from the structural recursion template. The top levelmerge
function is not recursive.
Note If you do the extra credit version of this problem, you do not need to write a solution as specified in the book. - 17.7.1 [10 pts.]
Note: Make sure you understand section 14.4 before working on this problem. Use this data definition (which includes division an subtraction in addition to multiplication and addition) as a starting point:
You are required to extend this definition to include applications, which are expressions likeCode Block ; An expression is one of: ; - a number ; - a symbol ; - (make-mul e1 e2) where e1 and e2 are expressions ; - (make-add e1 e2) where e1 and e2 are expressions ; - (make-div e1 e2) where e1 and e2 are expressions ; - (make-sub e1 e2) where e1 and e2 are expressions ; given (define-struct mul (left right)) (define-struct add (left right)) (define-struct div (left right)) (define-struct sub (left right)) ; Examples ; 5 ; 'f ; (make-mul 5 3) ; (make-add 5 3) ; (make-div 5 3) ; (make-sub 5 3) ; Template for processing an expression #| ; exp-f : exp -> ... (define (exp-f ... a-exp ...) (cond [(number? exp) ... ] [(symbol? exp) ... ] [(mul? exp) ... (exp-f ... (mul-left exp) ...) ... (exp-f ... (mul-right exp) ...) ... ] [(add? exp) ... (exp-f ... (add-left exp) ...) ... (exp-f ... (add-right exp) ...) ... ] [(div? exp) ... (exp-f ... (div-left exp) ...) ... (exp-f ... (div-right exp) ...) ... ] [(sub? exp) ... (exp-f ... (sub-left exp) ...) ... (exp-f ... (sub-right exp) ...) ... ]))
Be sure to include a function template with your solution.Code Block (f (+ 15 x)) (g y)
- 18.1.5, parts 1, 4, & 5 [5 pts.]
- 18.1.15 [5 pts.]
Optional problem for extra credit: [50 pts]
The fibonacci function fib is defined by the following rules (in Scheme notation):
Code Block |
---|
(fib 0) = 1 (fib 1) = 1 (fib (+ n 1)) = (+ (fib n) (fib (- n 1))) |
A naive program for computing fib
(lifted directly from the definition) runs in exponential time, i.e. the running time for (fib n)
is proportional to K*b**n
for some constants K
and b
). It is easy to write a program that computes (fib n)
in time proportional to n
. Your challenge is to write a program that computes (fib n)
in log time assuming that all multiplications and additions take constant time, which is unrealistic for large n
. More precisely, your program should compute (fib n)
using only O(
log
n)
addition and multiplication operations (less than K *
log
n
operations for some constant K
).
Hints: assume n = 2**m
. Derive a recurrence for fib 2**(m+1)
in terms of fib 2**m
and fib 2**(m-1)
. Initially write a program that works when n
is a power of 2. Then refine it to a program that works for all n
.
Note: in some definitions of fib
, fib(0) = 0
which slightly changes the recurrence equations but does not affect asymptotic complexity.