Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Home

Office Hours

HJlib Info

edX site

Autograder Guide

Other Resources

COMP 322: Fundamentals of Parallel Programming (Spring

...

2024)

 


Instructors

Instructor:

Mackale Joyner, DH 2063

Zoran Budimlić, DH 3003

TAs:
Adrienne Li, Austin Hushower, Claire Xu, Diep Hoang, Hunena Badat, Maki Yu, Mantej Singh, Rose Zhang, Victor Song, Yidi Wang 
Haotian Dang, Andrew Ondara, Stefan Boskovic, Huzaifa Ali, Raahim Absar

Piazza site:

https://piazza.com/rice/spring2024

Admin Assistant:Annepha Hurlock, annepha@rice.edu, DH 3122, 713-348-5186 

 

Piazza site:

https://piazza.com/rice/spring2022

/comp322 (Piazza is the preferred medium for all course communications)

Cross-listing:

ELEC 323

Lecture location:

Herzstein

Amphitheater (online 1st 2 weeks)

Amp

Lecture times:

MWF 1:00pm - 1:50pm

Lab locations:

Keck 100 (online 1st 2 weeks

Mon (Brockman 101)

Tue (Herzstein Amp)

Lab times:

Mon  3:00pm - 3:50pm (

Austin

SB, HA, AO)

Wed

Tue   4:00pm - 4:

30pm - 5:20pm (Claire, Hunena, Mantej, Yidi, Victor

50pm  (RA, HD)

Course Syllabus

A summary PDF file containing the course syllabus for the course can be found here.  Much of the syllabus information is also included below in this course web site, along with some additional details that are not included in the syllabus.

...

The desired learning outcomes fall into three major areas:

1) Parallelism: functional programming, Java streams, creation and coordination of parallelism (async, finish), abstract performance metrics (work, critical paths), Amdahl's Law, weak vs. strong scaling, data races and determinism, data race avoidance (immutability, futures, accumulators, dataflow), deadlock avoidance, abstract vs. real performance (granularity, scalability), collective & point-to-point synchronization (phasers, barriers), parallel algorithms, systolic algorithms.

...

To ensure that students gain a strong knowledge of parallel programming foundations, the classes and homeworks homework will place equal emphasis on both theory and practice. The programming component of the course will mostly use the  Habanero-Java Library (HJ-lib)  pedagogic extension to the Java language developed in the  Habanero Extreme Scale Software Research project  at Rice University.  The course will also introduce you to real-world parallel programming models including Java Concurrency, MapReduce. An important goal is that, at the end of COMP 322, you should feel comfortable programming in any parallel language for which you are familiar with the underlying sequential language (Java or C). Any parallel programming primitives that you encounter in the future should be easily recognizable based on the fundamentals studied in COMP 322.

...

Lecture Schedule

...

 



Week

Day

Date (

2022 

2024)

Lecture

Assigned Reading

Assigned Videos (see Canvas site for video links)

In-class Worksheets

Slides

Work Assigned

Work Due

 
Worksheet Solutions

1

Mon

Jan

10

08

Lecture 1: Introduction

  



worksheet1lec1-
slides

 

 

  

 

slides  



WS1-solution


Wed

Jan

12

10

Lecture 2:  Functional Programming

  


worksheet2
lec2 
lec02-slides

 

 

  



WS2-solution

FriJan
14worksheet3
12Lecture 3: Higher order functions
  


worksheet3 lec3-
slides 
slides   
  



WS3-solution

2

Mon

Jan

17

15

No class: MLK

      

  

 










Wed

Jan

19

17

Lecture 4: Lazy Computation
   



worksheet4lec4-slides
    


WS4-solution


Fri

Jan

21

19

Lecture 5: Java Streams

   



worksheet5lec5-slidesHomework 1
  

WS5-solution
3MonJan
24 
22

Lecture 6: Map Reduce with Java Streams

Module 1: Section 2.4Topic 2.4 Lecture, Topic 2.4 Demonstration  worksheet6lec6-slides

 

   



WS6-solution


Wed

Jan

26

24

Lecture 7: Futures

Module 1: Section 2.1Topic 2.1 Lecture , Topic 2.1 Demonstrationworksheet7lec7-slides

 

   

 



WS7-solution


Fri

Jan

28

26

Lecture 8:  Async, Finish, Computation Graphs

, Ideal Parallelism

Module 1: Sections 1.
2
1, 1.
3
2Topic 1.
2
1 Lecture, Topic 1.
2
1 Demonstration, Topic 1.
3
2 Lecture, Topic 1.
3
2 Demonstrationworksheet8
lec8 
lec8-slides
   


WS8-solution

4

Mon

 


Jan
31
29 Lecture 9: Ideal Parallelism, Data-Driven Tasks 

Module 1: Section 1.3, 4.5

 


Topic 1.3 Lecture, Topic 1.3 Demonstration, Topic 4.5 Lecture

 

, Topic 4.5 Demonstration

worksheet9

lec9-slides 
 


WS9-solution
 


Wed
  
Jan 31Lecture
 WedFeb 02Lecture
10: Event-based programming model

 

  




worksheet10lec10-slides
     

Homework 1WS10-solution

FriFeb
04  worksheet11
02Lecture 11: GUI programming
as an example of event-based,
futures/callbacks in GUI programming
, Scheduling/executing computation graphs

Module 1: Section 1.4Topic 1.4 Lecture , Topic 1.4 Demonstrationworksheet11
lec11-slidesHomework 2
   

WS11-solution
5

Mon

Feb

07

05

Lecture 12:
Scheduling/executing computation graphs
Abstract performance metrics, Parallel Speedup, Amdahl's Law Module 1: Section 1.
4
5Topic 1.
4
5 Lecture , Topic 1.
4
5 Demonstrationworksheet12lec12-slides
    

 



WS12-solution


Wed

Feb

09

07

Lecture 13:

Lightweight task parallelism

Accumulation and reduction. Finish

/async

accumulators

Module 1: Section
1
2.
1
3

Topic

1

2.

1

3 Lecture

,

  Topic

1

2.

1

 

3 Demonstration

worksheet13lec13-slides 
   

WS13-solution


Fri

Feb

11

09

No class: Spring Recess

 

        










6

Mon

Feb

14

12

Lecture 14:

Parallel Speedup, Critical Path, Amdah's Law

Data Races, Functional & Structural Determinism

Module 1:
Section 1
Sections 2.5, 2.6Topic
1
2.5 Lecture ,  Topic
2.5 Demonstration,  Topic 2.6 Lecture,  Topic 2.6 Demonstrationworksheet14lec14-slides
    


WS14-solution


Wed

Feb
16
14

Lecture 15:

Recursive Task Parallelism   

Limitations of Functional parallelism.
Abstract vs. real performance. Cutoff Strategy



worksheet15lec15-slides

 

 

   



Homework 2WS15-solution
 


FriFeb
18
16

Lecture 16:

Accumulation and reduction. Finish accumulatorsModule 1: Section 2.3Topic 2.3 Lecture , Topic 2.3 Demonstration 

Recursive Task Parallelism  



worksheet16 lec16-slidesHomework 3
  

WS16-solution

7

Mon

Feb

21

19

Lecture 17: Midterm Review

   lec17-slides    

 

Wed

Feb 23

Lecture 18: Limitations of Functional parallelism.
Abstract vs. real performance. Cutoff Strategy

  



lec17-slides




Wed

Feb 21

Lecture 18: Midterm Review

 




lec18-slides
  
  

 






Fri

Feb
25 
23 

Lecture 19:

Data Races, Functional & Structural DeterminismModule 1: Sections 2.5, 2.6

 Fork/Join programming model. OS Threads. Scheduler Pattern


Topic 2.
5
7 Lecture, Topic 2.
5
7 Demonstration, Topic 2.
6
8 Lecture, Topic 2.
6  
8 Demonstrationworksheet19lec19-slides
   


WS19-solution

8

Mon

Feb
28
26 

Lecture 20:

Confinement & Monitor Pattern. Critical sections
Global lock
Module 2: Sections 5.1, 5.2, 5.6 Topic 5

Data-Parallel Programming model. Loop-Level Parallelism, Loop Chunking

Module 1: Sections 3.1, 3.2, 3.3Topic 3.1 Lecture, Topic
5
3.1 Demonstration , Topic
5
3.2 Lecture,
Topic 5
 Topic 3.2 Demonstration, Topic
5
3.
6
3 Lecture,
Topic 5
 Topic 3.
6
3 Demonstrationworksheet20
lec20
lec20-slides
   
 
    


WS20-solution


Wed

Mar 02

Feb 28

Lecture 21:

N-Body problem, applications and implementations

Barrier Synchronization with Phasers

Module 1: Sections 3.4 Topic 3.4 Lecture, Topic 3.4 Demonstrationworksheet21    lec21-slides

WS21-solution
  worksheet21lec21-slides     


Fri

Mar

04

01

Lecture 22:

Fork/Join programming model. OS Threads. Scheduler Pattern Module 2: Sections 2.7, 2.8Topic 2.7 Lecture, Topic 2.7 Demonstration, Topic 2.8 Lecture, Topic 2.8 Demonstration,  

Stencil computation. Point-to-point Synchronization with Phasers

Module 1: Sections 4.2, 4.3

Topic 4.2 Lecture, Topic 4.2 Demonstration, Topic 4.3 Lecture, Topic 4.3 Demonstrationworksheet22lec22-slides
Homework 4

 

 


WS22-solution

9

Mon

Mar

07

04

Lecture 23:

 Locks, Atomic variables

Fuzzy Barriers with Phasers

Module
2
1:
7
Section 4.
3
1
Topic 7
 Topic 4.
3 Lecture
1 Lecture, Topic 4.1 Demonstration

 

worksheet23lec23-slides
 

 

  

Homework 3 (CP 1)

WS23-solution


Wed

Mar

09

06

Lecture 24:

Parallel Spanning Tree, other graph algorithms

Confinement & Monitor Pattern. Critical sections
Global lock

Module 2: Sections 5.1, 5.2Topic 5.1 Lecture, Topic 5.1 Demonstration, Topic 5.2 Lecture, Topic 5.2 Demonstration, Topic 5.6 Lecture, Topic 5.6 Demonstrationworksheet24 lec24-slides


WS24-solution


Fri

Mar 08

 Lecture 25:  Atomic variables, Synchronized statementsModule 2: Sections 5.4, 7.2Topic 5.4 Lecture, Topic 5.4 Demonstration, Topic 7.2 Lecture worksheet25lec25-slides


WS25-solution

Mon

Mar 11
  worksheet24 lec24-slides 

 

  

 

Fri

Mar 11

 Lecture 25: Linearizability of Concurrent ObjectsModule 2: 7.4Topic 7.4 Lectureworksheet25lec25-slides 

 

   

Mon

Mar 14

No class: Spring Break


 
 







Wed
   

 

  
Mar 13No class: Spring Break








Fri

Mar 15

 WedMar 16

No class: Spring Break

 








10

   

 

   

 

Fri

Mar 18

No class: Spring Break

     

 

  

10

Mon

Mon

Mar 18

Mar 21

Lecture 26: Java Threads and Locks

- Soundness and progress guarantees

Module 2: Sections 7.
5
1, 7.3Topic 7.
5 Lecture

 

1 Lecture, Topic 7.3 Lectureworksheet26lec26-slides
    


WS26-solution


Wed

Mar

23

20

Lecture 27:

Dining Philosophers Problem

Read-Write Locks,  Soundness and progress guarantees

Module 2: Section 7.
6
3Topic 7.
4
3 Lecture, Topic 7.
6
5 Lectureworksheet27lec27-slides

 

   

 


Homework 3 (CP 2)WS27-solution


Fri

Mar

25

22

Lecture 28:

Read-Write Pattern. Read-Write Locks. Fairness & starvation

Dining Philosophers Problem


Topic 7.6 Lecture
Module 2: 7.3, 7.5Topic 7.3 Lecture, Topic 7.5 Lecture,  
worksheet28lec28-slides

 

 

 

 




WS28-solution

11

Mon

Mar

28

25

Lecture 29:

Task Affinity and locality. Memory hierarchy

 Linearizability of Concurrent Objects

Module 2: Sections 7.4Topic 7.4 Lecture
  
worksheet29lec29-slides

 

 

  

 



WS29-solution


Wed

Mar

30

27

Lecture 30:

Reactor Pattern. Web servers 

 Parallel Spanning Tree, other graph algorithms

 
worksheet30lec30-slides

 

   

 

Fri

Apr 01

Lecture 31: Scan Pattern. Parallel Prefix Sum, uses and algorithms

 



WS30-solution


Fri

Mar 29

Lecture 31: Message-Passing programming model with Actors

Module 2: Sections 6.1, 6.2Topic 6.1 Lecture, Topic 6.1 Demonstration,   Topic 6.2 Lecture, Topic 6.2 Demonstration
  
worksheet31lec31-slides
Homework 5

 

 


WS31-solution

12

Mon

Apr

04

01

Lecture 32:
Data-Parallel Programming model. Loop-Level Parallelism, Loop ChunkingModule 1: Sections 3.1, 3.2, 3.3Topic 3.1 Lecture , Topic 3.1 Demonstration , Topic 3.2 Lecture,  Topic 3.2 Demonstration,
Active Object Pattern. Combining Actors with task parallelismModule 2: Sections 6.3, 6.4Topic 6.3 Lecture, Topic 6.3 Demonstration,   Topic 6.4 Lecture, Topic 6.4
Topic 3.3 Lecture,  Topic 3.3
Demonstrationworksheet32lec32-slides

 

 

  

Homework 4

Homework 3 (All)

WS32-solution
 


Wed

Apr

06

03

Lecture 33:

Barrier Synchronization with phasersModule 1: Section 3.4Topic 3.4 Lecture ,   Topic 3.4 Demonstration

Task Affinity and locality. Memory hierarchy



worksheet33lec33-slides

 

   

 



WS33-solution


Fri

Apr

08

05

Lecture 34:

  Stencil computation. Point-to-point Synchronization with PhasersModule 1: Section 4.2, 4.3Topic 4.2 Lecture ,   Topic 4.2 Demonstration, Topic 4.3 Lecture,  Topic 4.3 Demonstration

Eureka-style Speculative Task Parallelism

 
worksheet34lec34-slides
 

 

  


WS34-solution

13

Mon

Apr

11

08

Lecture 35: Message-Passing programming model with ActorsModule 2: 6.1, 6.2Topic 6.1 Lecture ,   Topic 6.1 Demonstration ,   Topic 6.2 Lecture, Topic 6.2 Demonstration
No class: Solar Eclipse









WedApr 10Lecture 35: Scan Pattern. Parallel Prefix Sum


worksheet35lec35-slides

 

 

  

Homework 4 (CP 1)WS35-solution
 WedApr 13Lecture 36: Active Object Pattern. Combining Actors with task parallelismModule 2: 6.3, 6.4

Topic 6.3 Lecture ,   Topic 6.3 Demonstration ,   Topic 6.4 Lecture, Topic 6.4 Demonstration

worksheet36lec36-slides     


FriApr
15
12Lecture
37: Eureka-style Speculative Task Parallelism  worksheet37lec37-slides   
36: Parallel Prefix Sum applications

worksheet36lec36-slides

WS36-solution
 

14MonApr
18
15Lecture
38lec38
37: Overview of other models and frameworks
   



lec37-slides
   
  





WedApr
20
17Lecture
39
38: Course Review (Lectures 19-
38lec39
34)
 
  

lec38-slides
     

Homework 4 (All)


FriApr
22
19Lecture
40
39: Course Review (Lectures 19-
38
34)
   lec40



lec39-slides
    





Lab Schedule

Lab #

Date (

2022

2023)

Topic

Handouts

Examples

1

Jan

10

08

Infrastructure setup

lab0-handout

lab1-handout

 


-Jan
17
15No lab this week (MLK)

2Jan 22Functional Programminglab2-handout

3

Jan 29

Futures

lab3-handout

4Feb 05Data-Driven Taskslab4-handout

-

Feb 12

No lab this week



-Feb 19No lab this week (Midterm Exam)

5

Feb 26

Loop Parallelism 

lab5-handoutimage kernels
6Mar 04Recursive Task Cutoff Strategylab6-handout
-Mar 11
   

-

Jan 24

 

 -Jan 31   

-

Feb 07

 

  -

Feb 14

 

  -

Feb 21

 

  -Feb 28   -Mar 07   

-

Mar 14-
No lab this week (Spring Break)
  


7Mar
21
18
   -Mar 28   -

Apr 04

 

 
Java Threadslab7-handout
8Mar 25Concurrent Listslab8-handout
9Apr 01Actorslab9-handout
 

-

Apr

11

08

No lab this week (Solar Eclipse)

 

  



-

Apr

18

15

No lab this week

 

  



Grading, Honor Code Policy, Processes and Procedures

...

Labs must be submitted by the following Monday at 11:59pm3pm.  Labs must be checked off by a TA.

Worksheets should be completed by the deadline listed in Canvas before the start of the following class (for full credit) so that solutions to the worksheets can be discussed in the next class.

...