Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Home

Office Hours

HJlib Info

edX site

Autograder Guide

Other Resources

COMP 322: Fundamentals of Parallel Programming (Spring

...

2023)

 


Instructors

Instructor:

Mackale Joyner, DH 2063

Zoran Budimlić, DH 3003

TAs:
Adrienne Li, Austin Hushower, Claire Xu, Diep Hoang, Hunena Badat, Maki Yu, Mantej Singh, Rose Zhang, Victor Song, Yidi Wang  Admin Assistant:Annepha Hurlock, annepha@rice.edu , DH 3122, 713-348-5186  
Mohamed Abead, Chase Hartsell, Taha Hasan, Harrison Huang, Jerry Jiang, Jasmine Lee, Michelle Lee, Hung Nguyen, Quang Nguyen, Ryan Ramos, Oscar Reynozo, Delaney Schultz, Tina Wen, Raiyan Zannat, Kailin Zhang

Piazza site:

https://piazza.com/rice/

spring2022

spring2023/comp322 (Piazza is the preferred medium for all course communications)

Cross-listing:

ELEC 323

Lecture location:

Herzstein Amphitheater

(online 1st 2 weeks)

Lecture times:

MWF 1:00pm - 1:50pm

Lab locations:

Mon (Herzstein Amp), Tue (Keck 100

(online 1st 2 weeks

)

Lab times:

Mon  3:00pm - 3:50pm (

Austin, Claire

Raiyan, Oscar, Mohamed, Ryan, Michelle, Taha)

Wed

Tue 4:

30pm

00pm -

5

4:

20pm

50pm (

Hunena

Tina,

Mantej

Delaney,

Yidi

Chase,

Victor

Hung,

Rose

Jerry,

Adrienne

Kailin,

Diep, Maki

Jasmine)

Course Syllabus

A summary PDF file containing the course syllabus for the course can be found here.  Much of the syllabus information is also included below in this course web site, along with some additional details that are not included in the syllabus.

...

The desired learning outcomes fall into three major areas:

1) Parallelism: functional programming, Java streams, creation and coordination of parallelism (async, finish), abstract performance metrics (work, critical paths), Amdahl's Law, weak vs. strong scaling, data races and determinism, data race avoidance (immutability, futures, accumulators, dataflow), deadlock avoidance, abstract vs. real performance (granularity, scalability), collective & point-to-point synchronization (phasers, barriers), parallel algorithms, systolic algorithms.

...

To ensure that students gain a strong knowledge of parallel programming foundations, the classes and homeworks homework will place equal emphasis on both theory and practice. The programming component of the course will mostly use the  Habanero-Java Library (HJ-lib)  pedagogic extension to the Java language developed in the  Habanero Extreme Scale Software Research project  at Rice University.  The course will also introduce you to real-world parallel programming models including Java Concurrency, MapReduce. An important goal is that, at the end of COMP 322, you should feel comfortable programming in any parallel language for which you are familiar with the underlying sequential language (Java or C). Any parallel programming primitives that you encounter in the future should be easily recognizable based on the fundamentals studied in COMP 322.

...

There are no required textbooks for the class. Instead, lecture handouts are provided for each module as follows.  You are expected to read the relevant sections in each lecture handout before coming to the lecture.  We will also provide a number of references in the slides and handouts.The links to the latest versions of the lecture handouts are included below:

  • Module 1 handout (Parallelism)
  • Module 2 handout  handout (Concurrency)

There are also a few optional textbooks that we will draw from during the course.  You are encouraged to get copies of any or all of these books.  They will serve as useful references both during and after this course:

Lecture Schedule

...

 



Week

Day

Date (

2022

2023)

Lecture

Assigned Reading

Assigned Videos (see Canvas site for video links)

In-class Worksheets

Slides

Work Assigned

Work Due

Worksheet Solutions
 

1

Mon

Jan

10

09

Lecture 1: Introduction

  



worksheet1lec1-slides  

 

 

 



WS1-solution
 


Wed

Jan

12

11

Lecture 2:  Functional Programming

GList.java  


worksheet2lec02-slides

 

 

WS2-solution 



WS2-solution

FriJan
14
13Lecture 3: Higher order functions
  


worksheet3 lec3-slides 
 

 

 



WS3-solution
 

2

Mon

Jan

17

16

No class: MLK

    

    

 










Wed

Jan

19

18

Lecture 4: Lazy Computation
  



worksheet4lec4-slides
    

 



WS4-solution


Fri

Jan

21

20

Lecture 5: Java Streams

 


worksheet5
 worksheet5 
lec5-slidesHomework 1
  

WS5-solution
3MonJan
24 
23

Lecture 6: Map Reduce with Java Streams

Module 1: Section 2.4Topic 2.4 Lecture, Topic 2.4 Demonstration  worksheet6lec6-slides

 

   



WS6-solution


Wed

Jan

26

25

Lecture 7: Futures

Module 1: Section 2.1Topic 2.1 Lecture , Topic 2.1 Demonstrationworksheet7lec7-slides

 

   

 



WS7-solution


Fri

Jan

28

27

Lecture 8:  Async, Finish, Computation Graphs

, Ideal Parallelism

Module 1: Sections 1.
2
1, 1.
3
2Topic 1.
2
1 Lecture, Topic 1.
2
1 Demonstration, Topic 1.
3
2 Lecture, Topic 1.
3
2 Demonstrationworksheet8
lec8 
lec8-slides
   


WS8-solution

4

Mon
 


Jan
31
30 Lecture 9: Ideal Parallelism, Data-Driven Tasks 

Module 1: Section 1.3, 4.5

 


Topic 1.3 Lecture, Topic 1.3 Demonstration, Topic 4.5 Lecture

   

, Topic 4.5 Demonstration

worksheet9

lec9-slides 
    


WS9-solution

WedFeb
02
01Lecture 10: Event-based programming model

 

 

 




worksheet10lec10-slides
    

Homework 1WS10-solution
 


FriFeb
04
03Lecture 11: GUI programming
as an example of event-based  worksheet11lec11-slidesHomework 2Homework 1  5

Mon

Feb 07

Lecture 12:
,

futures/callbacks in GUI programming
Scheduling/executing computation graphs
Abstract performance metrics

Module 1: Section 1.4Topic 1.4 Lecture , Topic 1.4 Demonstration
worksheet12
worksheet11
lec12
lec11-slides
    

 

Wed

Feb 09

Homework 2
WS11-solution
5

Mon

Feb 06

Lecture 12: Abstract performance metrics, Parallel Speedup, Amdahl's Law 
Lecture 13: Lightweight task parallelism. Finish/async
Module 1: Section 1.
1
5Topic 1.
1
5 Lecture , Topic 1.
1
5 Demonstration
worksheet13
worksheet12
lec13

 

Fri

Feb 11

No class: Spring Recess

 

        
lec12-slides
    


WS12-solution


Wed

Feb 08

Lecture 13: Accumulation and reduction. Finish accumulators

Module 1: Section 2.3

Topic 2.3 Lecture   Topic 2.3 Demonstration

worksheet13lec13-slides 
WS13-solution


Fri

Feb 10

No class: Spring Recess










6

Mon

Feb

14

13

Lecture 14:

Parallel Speedup, Critical Path, Amdah's Law

Data Races, Functional & Structural Determinism

Module 1:
Section 1
Sections 2.5, 2.6Topic
1
2.5 Lecture ,  Topic
2.5 Demonstration,  Topic 2.6 Lecture,  Topic 2.6 Demonstrationworksheet14lec14-slides
    


WS14-solution


Wed

Feb
16
15

Lecture 15:

Recursive Task Parallelism    

Limitations of Functional parallelism.
Abstract vs. real performance. Cutoff Strategy



worksheet15lec15-slides

 

 

   



Homework 2WS15-solution
 


FriFeb
18
17

Lecture 16:

Accumulation and reduction. Finish accumulatorsModule 1: Section 2.3Topic 2.3 Lecture , Topic 2.3 Demonstration

Recursive Task Parallelism  



worksheet16 lec16-slidesHomework 3
Homework 2  

WS16-solution

7

Mon

Feb

21 

20

Lecture 17: Midterm Review

   lec17-slides    



lec17-slides




Wed

Feb

23   

22

Lecture 18:

Limitations of Functional parallelism.
Abstract vs. real performance. Cutoff Strategy

Midterm Review




lec18-slides
   
 

 






Fri

Feb
25 
24 

Lecture 19:Data

Races, Functional & Structural Determinism

-Parallel Programming model. Loop-Level Parallelism, Loop Chunking

Module 1: Sections
2
3.
5
1, 3.2, 3.
6
3Topic
2
3.
5 Lecture
1 Lecture, Topic 3.1 Demonstration , Topic 3.2 Lecture,  Topic 3.
5
2 Demonstration, Topic
2
3.
6
3 Lecture,
Topic 2
 Topic 3.
6
3 Demonstrationworksheet19lec19-slides
    


WS19-solution

8

Mon

Feb

28

27

Lecture 20:

Confinement & Monitor Pattern. Critical sections
Global lock

Barrier Synchronization with Phasers

Module
2
1: Sections
5.1, 5.2, 5.6
3.4 Topic
5
3.
1
4 Lecture, Topic
5
3.
1 Demonstration, Topic 5.2 Lecture, Topic 5.2 Demonstration, Topic 5.6 Lecture, Topic 5.6 Demonstration
4 Demonstrationworksheet20
l ec20
lec20-slides      
 


WS20-solution
   


Wed

Mar 01

 

Wed

Mar 02

Lecture 21:

N-Body problem, applications and implementations

Stencil computation. Point-to-point Synchronization with Phasers

Module 1: Sections 4.2, 4.3

Topic 4.2 Lecture, Topic 4.2 Demonstration, Topic 4.3 Lecture, Topic 4.3 Demonstrationworksheet21lec21-slides

WS21-solution


Fri

Mar 03

Lecture 22: Fuzzy Barriers with Phasers

Module 1: Section 4.1 Topic 4.1 Lecture, Topic 4.1 Demonstrationworksheet22lec22-slides


WS22-solution

9

Mon

Mar 06

Lecture 23:  Fork/Join programming model. OS Threads. Scheduler Pattern


Topic 2.7 Lecture, Topic 2.7 Demonstration, Topic 2.8 Lecture, Topic 2.8 Demonstration

worksheet23 lec23-slides

Homework 3 (CP 1)

WS23-solution


Wed

Mar 08

Lecture 24: Confinement & Monitor Pattern. Critical sections
Global lock

Module 2: Sections 5.1, 5.2Topic 5.1 Lecture, Topic 5.1 Demonstration, Topic 5.2 Lecture, Topic 5.2 Demonstration, Topic 5.6 Lecture, Topic 5.6 Demonstrationworksheet24 lec24-slides


WS24-solution


Fri

Mar 10

 Lecture 25:  Atomic variables, Synchronized statementsModule 2: Sections 5.4, 7.2Topic 5.4 Lecture, Topic 5.4 Demonstration, Topic 7.2 Lecture worksheet25lec25-slides


WS25-solution

Mon

Mar 13

No class: Spring Break


 






WedMar 15No class: Spring Break








Fri

Mar 17

No class: Spring Break









10

Mon

Mar 20

Lecture 26: Parallel Spanning Tree, other graph algorithms



worksheet26lec26-slides

WS26-solution


Wed

Mar 22

Lecture 27: Java Threads and Locks

Module 2: Sections 7.1, 7.3Topic 7.1 Lecture, Topic 7.3 Lectureworksheet27lec27-slides


Homework 3 (CP 2)WS27-solution


Fri

Mar 24

Lecture 28: Java Locks - Soundness and progress guarantees

Module 2: Section 7.5Topic 7.5 Lectureworksheet28lec28-slides




WS28-solution

11

Mon

Mar 27

Lecture 29:  Dining Philosophers Problem

Module 2: Section 7.6Topic 7.6 Lectureworksheet29lec29-slides



WS29-solution


Wed

Mar 29

Lecture 30: Read-Write Locks, Linearizability of Concurrent Objects

Module 2: Sections 7.3, 7.4Topic 7.3 Lecture, Topic 7.4 Lectureworksheet30lec30-slides



WS30-solution


Fri

Mar 31

Lecture 31: Message-Passing programming model with Actors

Module 2: Sections 6.1, 6.2Topic 6.1 Lecture, Topic 6.1 Demonstration,   Topic 6.2 Lecture, Topic 6.2 Demonstrationworksheet31lec31-slides


WS31-solution

12

Mon

Apr 03

No class



Homework 4

Homework 3 (All)




Wed

Apr 05

Lecture 32: Active Object Pattern. Combining Actors with task parallelism

Module 2: Sections 6.3, 6.4

Topic 6.3 Lecture, Topic 6.3 Demonstration,   Topic 6.4 Lecture, Topic 6.4 Demonstration

worksheet32lec32-slides



WS32-solution


Fri

Apr 07

Lecture 33: Task Affinity and locality. Memory hierarchy

 
worksheet33lec33-slides


WS33-solution

13

Mon

Apr 10

Lecture 34: Eureka-style Speculative Task Parallelism


worksheet34lec34-slides



WS34-solution

WedApr 12Lecture 35: Scan Pattern. Parallel Prefix Sum


worksheet35lec35-slides
Homework 4 (CP 1)WS35-solution

FriApr 14Lecture 36: Parallel Prefix Sum applications

worksheet36lec36-slides

WS36-solution
14MonApr 17Lecture 37: Overview of other models and frameworks


lec37-slides




WedApr 19Lecture 38: Course Review (Lectures 19-34)
 
lec38-slides
Homework 4 (All)


FriApr 21Lecture 39: Course Review (Lectures 19-34)


lec39-slides
  worksheet21lec21-slides    

 

Fri

Mar 04

Lecture 22: Fork/Join programming model. OS Threads. Scheduler Pattern

Module 2: Sections 2.7, 2.8Topic 2.7 Lecture, Topic 2.7 Demonstration, Topic 2.8 Lecture, Topic 2.8 Demonstration,  worksheet22lec22-slidesHomework 4

Homework 3

  

9

Mon

Mar 07

Lecture 23:  Locks, Atomic variables

Module 2: 7.3

Topic 7.3 Lecture

worksheet23 lec23-slides  

 

  

 

Wed

Mar 09

Lecture 24: Parallel Spanning Tree, other graph algorithms

  worksheet24 lec24-slides 

 

  

 

Fri

Mar 11

 Lecture 25: Linearizability of Concurrent ObjectsModule 2: 7.4Topic 7.4 Lectureworksheet25lec25-slides 

 

   

Mon

Mar 14

No class: Spring Break

     

 

   WedMar 16No class: Spring Break    

 

   

 

Fri

Mar 18

No class: Spring Break

     

 

  

10

Mon

Mar 21

Lecture 26: Java Locks - Soundness and progress guarantees

Module 2: 7.5Topic 7.5 Lecture worksheet26lec26-slides     

 

Wed

Mar 23

Lecture 27: Dining Philosophers Problem

Module 2: 7.6Topic 7.4 Lecture Topic 7.6 Lecture worksheet27lec27-slides

 

   

 

Fri

Mar 25

Lecture 28: Read-Write Pattern. Read-Write Locks. Fairness & starvation

Module 2: 7.3, 7.5Topic 7.3 Lecture, Topic 7.5 Lecture, worksheet28lec28-slides

 

 

 

  

11

Mon

Mar 28

Lecture 29: Task Affinity and locality. Memory hierarchy

  worksheet29lec29-slides

 

 

  

 

Wed

Mar 30

Lecture 30: Reactor Pattern. Web servers

  worksheet30lec30-slides

 

   

 

Fri

Apr 01

Lecture 31: Scan Pattern. Parallel Prefix Sum, uses and algorithms

  worksheet31lec31-slidesHomework 5

Homework 4

  

12

Mon

Apr 04

Lecture 32: Data-Parallel Programming model. Loop-Level Parallelism, Loop ChunkingModule 1: Sections 3.1, 3.2, 3.3Topic 3.1 Lecture , Topic 3.1 Demonstration , Topic 3.2 Lecture,  Topic 3.2 Demonstration, Topic 3.3 Lecture,  Topic 3.3 Demonstrationworksheet32lec32-slides

 

 

  

 

Wed

Apr 06

Lecture 33: Barrier Synchronization with phasers

Module 1: Section 3.4

Topic 3.4 Lecture ,   Topic 3.4 Demonstration

worksheet33lec33-slides

 

   

 

Fri

Apr 08

Lecture 34:  Stencil computation. Point-to-point Synchronization with Phasers

Module 1: Section 4.2, 4.3Topic 4.2 Lecture ,   Topic 4.2 Demonstration, Topic 4.3 Lecture,  Topic 4.3 Demonstrationworksheet34lec34-slides 

 

  

13

Mon

Apr 11

Lecture 35: Message-Passing programming model with ActorsModule 2: 6.1, 6.2

Topic 6.1 Lecture ,   Topic 6.1 Demonstration ,   Topic 6.2 Lecture, Topic 6.2 Demonstration

worksheet35lec35-slides

 

 

   WedApr 13Lecture 36: Active Object Pattern. Combining Actors with task parallelism Module 2: 6.3, 6.4

Topic 6.3 Lecture ,   Topic 6.3 Demonstration ,   Topic 6.4 Lecture, Topic 6.4 Demonstration

worksheet36lec36-slides     FriApr 15Lecture 37: Eureka-style Speculative Task Parallelism  worksheet37lec37-slides    14MonApr 18Lecture 38: Overview of other models and frameworks   lec38-slides     WedApr 20Lecture 39: Course Review (Lectures 19-38)   lec39-slides     FriApr 22Lecture 40: Course Review (Lectures 19-38)   lec40-slides Homework 5  





Lab Schedule

Lab #

Date (

2022

2023)

Topic

Handouts

Examples

1

Jan

10

09

Infrastructure setup

lab0-handout

lab1-handout

 -


-Jan 16No lab this week (MLK)

2Jan 23
Jan 17-
Functional Programminglab2-handout
 

3

Jan

24

30

 

Futures

 
lab3-handout
Jan 31

4
   

-

Feb 07

 

 
Feb 06Data-Driven Taskslab4-handout

5

Feb 13

Async / Finish

lab5-handout
 

-Feb
14

 

  
20No lab this week (Midterm Exam)

6

Feb 27

Loop Parallelism 

lab6-handoutimage kernels
7Mar 06Recursive Task Cutoff Strategylab7-handout
-Mar 13
-

Feb 21

 

  -Feb 28   -Mar 07   

-

Mar 14
No lab this week (Spring Break)
  


-Mar
21   -Mar 28   -

Apr 04

 

  

-

Apr 11

 

  

-

Apr 18

 

 
20No lab this week

8Mar 27Java Threadslab8-handout
9Apr 03Concurrent Listslab9-handout
10

Apr 10

Actors

lab10-handout

-

Apr 17

No lab this week

 



Grading, Honor Code Policy, Processes and Procedures

...

Labs must be submitted by the following Monday Wednesday at 114:59pm30pm.  Labs must be checked off by a TA.

Worksheets should be completed by the deadline listed in Canvas before the start of the following class (for full credit) so that solutions to the worksheets can be discussed in the next class.

...