Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Home

Office Hours

HJlib Info

edX site

Autograder Guide

Other Resources

COMP 322: Fundamentals of Parallel Programming (Spring

...

2024)

 


Instructors

Instructor:

Mackale Joyner, DH 2063

Zoran Budimlić, DH 3003

TAs:
Adrienne Li, Austin Hushower, Claire Xu, Diep Hoang, Hunena Badat, Maki Yu, Mantej Singh, Rose Zhang, Victor Song, Yidi Wang  
Haotian Dang, Andrew Ondara, Stefan Boskovic, Huzaifa Ali, Raahim Absar

Piazza site:

https://piazza.com/rice/spring2024

Admin Assistant:Annepha Hurlock, annepha@rice.edu , DH 3122, 713-348-5186 

 

Piazza site:

https://piazza.com/rice/spring2022

/comp322 (Piazza is the preferred medium for all course communications)

Cross-listing:

ELEC 323

Lecture location:

Herzstein

Amphitheater (online 1st 2 weeks)

Amp

Lecture times:

MWF 1:00pm - 1:50pm

Lab locations:

Keck 100 (online 1st 2 weeks

Mon (Brockman 101)

Tue (Herzstein Amp)

Lab times:

Mon  3:00pm - 3:50pm (

Austin

SB, HA,

Claire

AO)

Wed

Tue   4:00pm - 4:

30pm - 5:20pm (Hunena, Mantej, Yidi, Victor, Rose, Adrienne, Diep, Maki

50pm  (RA, HD)

Course Syllabus

A summary PDF file containing the course syllabus for the course can be found here.  Much of the syllabus information is also included below in this course web site, along with some additional details that are not included in the syllabus.

...

There are no required textbooks for the class. Instead, lecture handouts are provided for each module as follows.  You are expected to read the relevant sections in each lecture handout before coming to the lecture.  We will also provide a number of references in the slides and handouts.The links to the latest versions of the lecture handouts are included below:

  • Module 1 handout (Parallelism)
  • Module 2 handout handout (Concurrency)

There are also a few optional textbooks that we will draw from during the course.  You are encouraged to get copies of any or all of these books.  They will serve as useful references both during and after this course:

Lecture Schedule

 

...



Week

Day

Date (

2022

2024)

Lecture

Assigned Reading

Assigned Videos (see Canvas site for video links)

In-class Worksheets

Slides

Work Assigned

Work Due

Worksheet Solutions
 

1

Mon

Jan

10

08

Lecture 1: Introduction

  



worksheet1lec1-slides  

 

 



WS1-solution
  


Wed

Jan

12

10

Lecture 2:  Functional Programming

GList.java 



worksheet2lec02-slides

 

 



WS2-solution
  


FriJan
14
12Lecture 3: Higher order functions
  


worksheet3 lec3-slides 
 

 

 



WS3-solution
 

2

Mon

Jan

17

15

No class: MLK

         










Wed

Jan

19

17

Lecture 4: Lazy Computation

LazyList.java

Lazy.java

 



worksheet4lec4-slides
  

 



WS4-solution
 


Fri

Jan

21

19

Lecture 5: Java Streams

 

 


worksheet5lec5-slidesHomework 1
 

WS5-solution
 

3MonJan
24
22

Lecture 6: Map Reduce with Java Streams

Module 1: Section 2.4Topic 2.4 Lecture, Topic 2.4 Demonstration  worksheet6lec6-slides

 

 



WS6-solution
  


Wed

Jan

26

24

Lecture 7: Futures

Module 1: Section 2.1Topic 2.1 Lecture , Topic 2.1 Demonstrationworksheet7lec7-slides

 

 



WS7-solution
  


Fri

Jan

28

26

Lecture 8:  Async, Finish, Computation Graphs

, Ideal Parallelism

Module 1: Sections 1.
2
1, 1.
3
2Topic 1.
2
1 Lecture, Topic 1.
2
1 Demonstration, Topic 1.
3
2 Lecture, Topic 1.
3
2 Demonstrationworksheet8
lec8
lec8-slides
  


WS8-solution
 

4

Mon
 


Jan
31
29 Lecture 9:
Async
Ideal Parallelism,
Finish,
Data-Driven Tasks 

Module 1: Section 1.

1

3, 4.5

 


Topic 1.

1

3 Lecture, Topic 1.

1

3 Demonstration, Topic 4.5 Lecture, Topic 4.5 Demonstration

worksheet9

lec9-
slides   
slides 

WS9-solution
  


Wed
Feb 02
Jan 31Lecture 10: Event-based programming model

 

   




worksheet10lec10-slides
 

Homework 1WS10-solution
 
 


FriFeb
04
02Lecture 11: GUI programming
as an example of event-based,
futures/callbacks in GUI programming
, Scheduling/executing computation graphs

Module 1: Section 1.4Topic 1.4 Lecture , Topic 1.4 Demonstration
  
worksheet11lec11-slidesHomework 2
Homework 1

WS11-solution
 

5

Mon

Feb

07

05

Lecture 12:
Scheduling/executing computation graphs
Abstract performance metrics, Parallel Speedup, Amdahl's Law Module 1: Section 1.
4
5Topic 1.
4
5 Lecture , Topic 1.
4
5 Demonstrationworksheet12lec12-slides
  


WS12-solution
  


Wed

Feb

09

07

Lecture 13:

Parallel Speedup, Critical Path, Amdahl's Law

Accumulation and reduction. Finish accumulators

Module 1: Section
1
2.
5
3

Topic

1

2.

5

3 Lecture

,

  Topic

1

2.

5

3 Demonstration

worksheet13lec13-slides
 
 
WS13-solution
  


Fri

Feb

11

09

No class: Spring Recess

 

    

    










6

Mon

Feb

14

12

Lecture 14:

Accumulation and reduction. Finish accumulators

Data Races, Functional & Structural Determinism

Module 1:
Section
Sections 2.5, 2.
3
6Topic 2.
3 Lecture
5 Lecture ,  Topic 2.5 Demonstration,  Topic 2.6 Lecture,  Topic 2.
3
6 Demonstrationworksheet14lec14-slides
  


WS14-solution
  


Wed

Feb
16
14

Lecture 15:

Recursive Task Parallelism     

Limitations of Functional parallelism.
Abstract vs. real performance. Cutoff Strategy



worksheet15lec15-slides

 

 



Homework 2WS15-solution
  


FriFeb
18
16

Lecture 16:

Data Races, Functional & Structural DeterminismModule 1: Sections 2.5, 2.6Topic 2.5 Lecture ,  Topic 2.5 Demonstration,  Topic 2.6 Lecture,  Topic 2.6 Demonstration

Recursive Task Parallelism  



worksheet16 lec16-slidesHomework 3
Homework 2

WS16-solution
 

7

Mon

Feb

21

19

Lecture 17: Midterm Review

   



lec17-slides
    

 

Wed






Wed

Feb 21

Feb 23

Lecture 18:

Limitations of Functional parallelism.
Abstract vs. real performance. Cutoff Strategy

Midterm Review




lec18-slides
  worksheet18lec18-slides  WS18-solution  





Fri

Feb
25 
23 

Lecture 19:  Fork/Join programming model. OS Threads. Scheduler Pattern

 

Module 1: Sections 2.7, 2.8

Topic 2.7 Lecture, Topic 2.7 Demonstration, Topic 2.8 Lecture, Topic 2.8 Demonstration
, 
worksheet19lec19-slides
  


WS19-solution
 

8

Mon

Feb
28
26 

Lecture 20:

Confinement & Monitor Pattern. Critical sections
Global lock
Module 2: Sections 5.1, 5.2, 5.6 Topic 5

Data-Parallel Programming model. Loop-Level Parallelism, Loop Chunking

Module 1: Sections 3.1, 3.2, 3.3Topic 3.1 Lecture, Topic
5
3.1 Demonstration , Topic
5
3.2 Lecture,
Topic 5
 Topic 3.2 Demonstration, Topic
5
3.
6
3 Lecture,
Topic 5
 Topic 3.
6
3 Demonstrationworksheet20lec20-slides  
     


WS20-solution
  


Wed

Mar 02

Feb 28

Lecture 21:

  Atomic variables, Synchronized statements

Barrier Synchronization with Phasers

Module
2
1: Sections
5.4, 7.2
3.4 Topic
5
3.4 Lecture, Topic
5
3.4 Demonstration
, Topic 7.2 Lecture
worksheet21
lec21
    lec21-slides
  


WS21-solution
 

 



Fri

Mar

04

01

Lecture 22:

Parallel Spanning Tree, other graph algorithms 

Stencil computation. Point-to-point Synchronization with Phasers

Module 1: Sections 4.2, 4.3

Topic 4.2 Lecture, Topic 4.2 Demonstration, Topic 4.3 Lecture, Topic 4.3 Demonstration
  
worksheet22lec22-slides
Homework 4

Homework 3



WS22-solution
 

9

Mon

Mar

07

04

Lecture 23:

Java Threads and Locks

Fuzzy Barriers with Phasers

Module
2
1:
Sections 7
Section 4.1
, 7.3
 Topic 4
Topic 7
.1 Lecture, Topic
7
4.
3 Lecture  
1 Demonstrationworksheet23lec23-slides
 

Homework 3 (CP 1)

WS23-solution
  


Wed

Mar

09

06

Lecture 24:

Java Locks - Soundness and progress guarantees  

Confinement & Monitor Pattern. Critical sections
Global lock

Module 2:
7.5
Sections 5.1, 5.2Topic 5.1 Lecture, Topic 5.1 Demonstration, Topic 5.2 Lecture, Topic 5.2 Demonstration, Topic 5.6 Lecture, Topic 5.6 Demonstration
Topic 7.5 Lecture
worksheet24 lec24-slides
  


WS24-solution
  


Fri

Mar

11

08

 Lecture 25:
Dining Philosophers Problem  
 Atomic variables, Synchronized statementsModule 2: Sections 5.4, 7.
6
2Topic 5.4 Lecture, Topic 5.4 Demonstration, Topic 7.
6 Lecture
2 Lecture worksheet25
lec25
lec25-slides
  


WS25-solution
  


Mon

Mar
14
11

No class: Spring Break


 
 







Wed
   

 

  
Mar 13No class: Spring Break








Fri

Mar 15

 WedMar 16

No class: Spring Break

 








10

 

Mon

  

 

   

 

Fri

Mar 18

No class: Spring Break

     

 

  

10

Mon

Mar 21

Lecture 26: N-Body problem, applications and implementations 

  worksheet26lec26-slides   WS26-solution 

 

Wed

Mar 23

Lecture 27:

Mar 18

Lecture 26: Java Threads and Locks

Module 2: Sections 7.1, 7.3Topic 7.1 Lecture, Topic 7.3 Lectureworksheet26lec26-slides

WS26-solution


Wed

Mar 20

Lecture 27: Read-Write Locks,  Soundness and progress guarantees

Module 2: Section 7.3Topic 7.3 Lecture, Topic 7.5 Lectureworksheet27lec27-slides


Homework 3 (CP 2)WS27-solution


Fri

Mar 22

Lecture 28: Dining Philosophers Problem


Topic 7.6 Lectureworksheet28lec28-slides




WS28-solution

11

Mon

Mar 25

Lecture 29:  Linearizability

Read-Write Locks, Linearizability

of Concurrent Objects

Module 2: Sections 7.
3, 7.
4
Topic 7.3 Lecture,
Topic 7.4 Lecture
worksheet27
worksheet29
lec27WS27
lec29-slides

 

 



 
WS29-solution
 


Wed

Fri

Mar

25

27

Lecture

28: Message-Passing programming model with Actors

30:  Parallel Spanning Tree, other graph algorithms

 
worksheet30lec30-slides



WS30-solution


Fri

Mar 29

Lecture 31: Message-Passing programming model with Actors

Module 2: Sections 6.1, 6.2Topic 6.1 Lecture, Topic 6.1 Demonstration,   Topic 6.2 Lecture, Topic 6.2 Demonstrationworksheet31lec31-slides


WS31-solution

12

Mon

Apr 01

Lecture 32: Active Object Pattern. Combining Actors with task parallelismModule 2: Sections 6.3, 6.4Topic 6.3 Lecture, Topic 6.3 Demonstration,   Topic 6.4 Lecture, Topic 6.4 Demonstrationworksheet32lec32-slides

Homework 4

Homework 3 (All)

WS32-solution


Wed

Apr 03

Lecture 33: Task Affinity and locality. Memory hierarchy



worksheet33lec33-slides



WS33-solution


Fri

Apr 05

Lecture 34: Eureka-style Speculative Task Parallelism

 
worksheet34lec34-slides


WS34-solution

13

Mon

Apr 08

No class: Solar Eclipse









WedApr 10Lecture 35: Scan Pattern. Parallel Prefix Sum


worksheet35lec35-slides
Homework 4 (CP 1)WS35-solution

FriApr 12Lecture 36: Parallel Prefix Sum applications

worksheet36lec36-slides

WS36-solution
14MonApr 15Lecture 37: Overview of other models and frameworks


lec37-slides




WedApr 17Lecture 38: Course Review (Lectures 19-34)
 
lec38-slides
Homework 4 (All)


FriApr 19Lecture 39: Course Review (Lectures 19-34)


lec39-slides
Module 2: 6.1, 6.2Topic 6.1 Lecture, Topic 6.1 Demonstration,   Topic 6.2 Lecture, Topic 6.2 Demonstration worksheet28lec28-slides

 

 

 

WS28-solution 

11

Mon

Mar 28

Lecture 29: Active Object Pattern. Combining Actors with task parallelism 

Module 2: 6.3, 6.4Topic 6.3 Lecture, Topic 6.3 Demonstration,   Topic 6.4 Lecture, Topic 6.4 Demonstrationworksheet29lec29-slides

 

 

WS29-solution 

 

Wed

Mar 30

Lecture 30: Task Affinity and locality. Memory hierarchy 

  worksheet30lec30-slides

 

 WS30-solution 

 

Fri

Apr 01

Lecture 31: Data-Parallel Programming model. Loop-Level Parallelism, Loop Chunking

Module 1: Sections 3.1, 3.2, 3.3Topic 3.1 Lecture , Topic 3.1 Demonstration , Topic 3.2 Lecture,  Topic 3.2 Demonstration, Topic 3.3 Lecture,  Topic 3.3 Demonstrationworksheet31lec31-slidesHomework 5

Homework 4

WS31-solution 

12

Mon

Apr 04

Lecture 32: Barrier Synchronization with phasersModule 1: Section 3.4Topic 3.4 Lecture ,   Topic 3.4 Demonstrationworksheet32lec32-slides

 

 

  

 

Wed

Apr 06

Lecture 33:  Stencil computation. Point-to-point Synchronization with Phasers

Module 1: Section 4.2, 4.3

Topic 4.2 Lecture ,   Topic 4.2 Demonstration, Topic 4.3 Lecture,  Topic 4.3 Demonstration

worksheet33lec33-slides

 

   

 

Fri

Apr 08

Lecture 34: Scan Pattern. Parallel Prefix Sum

  worksheet34lec34-slides 

 

  

13

Mon

Apr 11

Lecture 35: Parallel Prefix Sum applications 

 

worksheet35lec35-slides

 

 

   WedApr 13Lecture 36: TBD 

 

worksheet36lec36-slides     FriApr 15Lecture 37: Eureka-style Speculative Task Parallelism  worksheet37lec37-slides    14MonApr 18Lecture 38: Overview of other models and frameworks   lec38-slides     WedApr 20Lecture 39: Course Review (Lectures 19-38)   lec39-slides     FriApr 22Lecture 40: Course Review (Lectures 19-38)   lec40-slides Homework 5  





Lab Schedule

Lab #

Date (

2022

2023)

Topic

Handouts

Examples

1

Jan

10

08

Infrastructure setup

lab0-handout

lab1-handout

 


-Jan 15No lab this week (MLK)

2Jan
17
22Functional Programminglab2-handout
 

3

Jan

24

29

Java Streams

Futures

lab3-handout

 


4
Jan 31Futureslab4-handout 5
Feb
07
05Data
-Driven Taskslab5-handout 6

Feb 14

Async / Finish

lab6-handout
-Driven Taskslab4-handout

-

Feb 12

No lab this week

 



-Feb
217
19No lab this week (Midterm Exam)
  


5

Feb

28

26

Loop Parallelism 

lab5
Recursive Task Cutoff Strategylab7
-handout
 
image kernels
8
6Mar
07
04Recursive Task Cutoff Strategylab6
Java Threadslab8
-handout
 

-Mar
14 
11No lab this week (Spring Break)
 


7
9
Mar
21
18
Concurrent Lists
Java Threads
lab910
lab7-handout
 

8Mar
28
25
Actors
Concurrent Lists
lab1011
lab8-handout
 

9Apr
04
01
Loop Parallelism
Actors
lab11
lab9-handout
 

-

Apr

11

08

No lab this week (Solar Eclipse)

 

  



-

Apr

18

 

  

15

No lab this week



Grading, Honor Code Policy, Processes and Procedures

...

Labs must be submitted by the following Wednesday Monday at 4:30pm3pm.  Labs must be checked off by a TA.

...