How to do your Scheme homework problems

Expository problems

Hand evaluation problems

Programming problems

Requirements

You must include a data definition and corresponding template for each form of data processed used in your homework submissions unless instructed otherwise. You only need to include a data definition and corresponding template once for an assignment, not once for every problem that uses that data defintion.

Data Definitions and Templates:

You need to devise (and document) your data design before you start writing functions that process this data. Data definitions should be documented as follows:

Basic form of a function definition

Sample Solution to a Programming Problem

The following text is a good solution to the problem of sorting a list of numbers into ascending order; it pulls together all of the specific pieces of design documentation, code documentation, and testing mentioned above. It would be better if it included a few more appropriately chosen tests.

;; COMP 211 HW #Sample
;; Corky Cartwright <cork@rice.edu>

;; A list-of-numbers is either:
;;   empty, or
;;   (cons n alon) where n is a number and alon is a list-of-numbers
;;
;; Examples:
;;   empty
;;   (cons 10 (cons -1 (cons 5 empty))) = '(10 -1 5)
;;   (cons 1 (cons 2 (cons 3 empty)))   = '(1 2 3)
;;   (cons 3 (cons 2 (cons 1 empty)))   = '(3 2 1)

#| Template: (enclosed in block comment brackets)
   (define (lon-f ... a-lon ...)
     (cond
       [(empty? a-lon) ...]
       [(cons? a-lon) ... (first a-lon) ...
                      ... (lon-f ... (rest a-lon) ...) ... ]))
|#

;; Main function: sort

;; Contract and purpose:
;; sort: list-of-numbers -> list-of-numbers
;; Purpose: (sort alon) returns the a list with same elements (including duplicates) as alon but in ascending order.

;; Examples:
;; (sort empty) = empty
;; (sort '(0)) = '(0)
;; (sort '(1 2 3)) = '(1 2 3)
;; (sort '(3 2 1)) = '(1 2 3)
;; (sort '(10 -1 10 -20 5)) = (-20 -1 5 10 10)

#| Template Instantiation:
   (define (sort a-lon)
     (cond
       [(empty? a-lon) ...]
       [(cons? a-lon) ... (first a-lon) ...
                      ... (sort (rest a-lon)) ... ]))
|#
;; Code:

   (define (sort a-lon)
     (cond
       [(empty? a-lon) empty]
       [(cons? a-lon) (insert (first a-lon) (sort (rest a-lon)))]))

;; Tests
(check-expect (sort empty) empty)
(check-expect (sort '(0)) '(0))
(check-expect (sort '(1 2 3)) '(1 2 3))
(check-expect (sort '(3 2 1)) '(1 2 3))
(check-expect (sort '(10 -1 10 -20 5)) '(-20 -1 5 10 10))

;; Auxiliary function

;; Contract and purpose
;; insert: number list-of-numbers -> list-of-numbers
;; Purpose: (insert n alon), where alon is in increasing order, returns a list containing n and the elts of alon in ascending order

;; Examples:

;;  (insert 17 empty) = '(17)
;;  (insert 17 '(17)) = '(17 17)
;;  (insert 4 '(1 2 3)) = '(1 2 3 4)
;;  (insert 0 '(1 2 3)) = '(0 1 2 3)
;;  (insert 2 '(1 1 3 4)) = '(1 1 2 3 4)

#| Template instantiation
   (define (insert n a-lon)
     (cond
       [(empty? a-lon) ...]
       [(cons? a-lon) ... (first a-lon) ...
                      ... (insert n (rest a-lon)) ... ]))
|#

;; Code
   (define (insert n a-lon)
     (cond
       [(empty? a-lon) (cons n empty)]
       [(cons? a-lon)
        (if (<= n (first a-lon)) (cons n a-lon)
            (cons (first a-lon) (insert n (rest a-lon))))]))
;; Tests

(check-expect (insert 17 empty) '(17))
(check-expect (insert 17 '(17)) '(17 17))
(check-expect (insert 4 '(1 2 3)) '(1 2 3 4))
(check-expect (insert 0 '(1 2 3)) '(0 1 2 3))
(check-expect (insert 2 '(1 1 3 4)) '(1 1 2 3 4))

Note: the Examples and Tests for each function above can be collapsed into a single entry by cutting out each Tests block and pasting it over the corresponding Examples block. Forward references in check-expect invocations work because the execution of check-expect code is deferred to the end of the contents of the definitions pane. For example, the Auxiliary function part can be rewritten as follows:

;; Auxiliary function

;; Contract and purpose
;; insert: number list-of-numbers -> list-of-numbers
;; Purpose: (insert n alon), where alon is in increasing order, returns a list containing n and the elts of alon in ascending order

;; Examples and Tests:

(check-expect (insert 17 empty) '(17))
(check-expect (insert 17 '(17)) '(17 17))
(check-expect (insert 4 '(1 2 3)) '(1 2 3 4))
(check-expect (insert 0 '(1 2 3)) '(0 1 2 3))
(check-expect (insert 2 '(1 1 3 4)) '(1 1 2 3 4))

#| Template instantiation
   (define (insert n a-lon)
     (cond
       [(empty? a-lon) ...]
       [(cons? a-lon) ... (first a-lon) ...
                      ... (insert n (rest a-lon)) ... ]))
|#

;; Code
   (define (insert n a-lon)
     (cond
       [(empty? a-lon) (cons n empty)]
       [(cons? a-lon)
        (if (<= n (first a-lon)) (cons n a-lon)
            (cons (first a-lon) (insert n (rest a-lon))))]))

4. Termination Argument: (For Chapter 23 onwards only)

If the template does not guarantee that a function terminates, you are required to explain why that function will terminate for all possible inputs.