
211hw12
Homework 12: Parallel Sudoku Solver
Due: Friday 23 April 2010 at 9:59:59 am

The assignment
The goal of Homework 12 is to write a Java program to solve Sudoku puzzles. We are providing a complete sequential solution to Homework 11 parallel
as a starting point, but you are welcome to use your solution if you prefer.

If you have not submitted Homework 11 as yet, please stop reading now. It is an honor code violation to see the materials for Homework 12
before you have submitted Homework 11.

Note that method in has the task of enumerating different solutions starting from the square located at findSolution() PartialSolution.java (ini
. It does so by binding the value of this square to each possible value and recurring on an unexplored square until no square has more tialI,initialJ)

than one possible value. If the set of possible values for a square becomes empty, then the partial solution with that square is a dead end; it cannot be
extended (by binding the unexplored squares to values) to a final solution. When all squares in a partial solution have exactly one value, it is a final
solution. In this assignment, you will build a parallel Sudoku puzzle solver by performing the enumeration of possible values for a square in parallel and
combining the results of these parallel computations to return the set of all possible solutions to the initial puzzle.

Your assignment is as follows:

Part 1: Perform a sequential task decomposition on a solution to Assignment 11, creating a separate task (as discussed in Lecture 31) for each Callable
possible value for the square located at . Test your code by running findSolution() on the given tests, and devise at least 5 more (initialI,initialJ)
tests for findSolution(). Then record the execution time output for solving in using this sequential version.puzzle1 Sudoku.java

Part 2: Convert the sequential task decomposition from Part (1) into a parallel task decomposition. Each task will now be executed in a Callable
separate thread, as discussed in Lecture 34. Test your code using the tests in 1). Then record the execution time output for solving in Sudoku.puzzle1
java using this parallel version. If you run your code on a processor with more than 1 core, you should see some improvement in execution time compared
to 1). It may be as small as 10% rather than a factor of 2. Discuss the possible trade-offs as to why the parallel version may not be much faster than the
sequential version, or may even be slower in some cases. Make your best effort to create a parallel version with the smallest execution time for puzzle1.
(Hint: you do not necessarily need to create a parallel thread at each level of the call to findSolution().)

Some Java classes you may find useful are: , , .Thread Callable FutureTask

The support code provided contains a DrJava project and a few simple Junit tests. Download the code from .here

Submission
Submit via Owlspace a file containing all the files from the support code including those that you modified. Don't forget to add as header to the .zip Parti

 class, your names and ids. Also include a file summarizing the execution times that you recorded ion parts (1) and (2).alSolution README.txt

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Thread.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Callable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/FutureTask.html
https://wiki.rice.edu/confluence/download/attachments/10946811/ParallelSudokuSupportCode.zip?version=1&modificationDate=1367952335075&api=v2

	211hw12

