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211lab04
Generative Recursion
Students should use DrScheme, following the design recipe, on the exercises at their own pace, while labbies wander among the students, answering 
questions, bringing the more important ones to the lab's attention.

Generative Recursion Design Recipe Review

In class, we presented a new more general methodology for developing Scheme functions called .generative recursion
To develop a generative recursive, we use a generalized design recipe that incorporates the following changes:

When making function examples, we need even more examples, as they help us to find the algorithm we will use.
When making a template, we don't follow the structure of the data. Instead, we ask ourselves six questions:

What is (are) the trivial case(s)?
How do we solve the trivial case(s)?
For the non-trivial case(s), how many subproblems do we use?
How do we generate these subproblems?
Can we combine the results of these subproblems to solve the given problem?
How do we combine the results of these subproblems?

We use the answers to the preceding questions to fill in the following very general template:

(define (f _args_)
  (cond [(_trivial_? _args)) (_solve-trivial_ _args_)]
        [else (_combine_ (f (_generate-subproblem-1_ _args_))
                        ...
                        (f (_generate-subproblem-n_ _args_)))]))

We add a step to reason about why our algorithm terminates, since this is no longer provided by simply following the structure of the data.

Converting a token stream to a list input stream

The Scheme reader reads list  rather than symbols or characters where a list input is defined by the following set of mutually recursive data inputs
definitions:

An  is either:input

any built-in Scheme value that is not a list (  or =cons?=)empty?
a .general list

A  is either:general list

empty ,
(cons i agl) where  is an  and  is a .i input agl general list

Note that the second clause above could be written as the following two clauses:

(cons p l) where  is a primitive Scheme value that is not a list, orp
(cons el l) where  and  are general lists.el l

Your task is to write the core function  used in an idealized Scheme reader stream.  converts a list of , where a  is defined listify listify tokens token
below, to a list of  as defined above.inputs

A  is eithertoken

any built-in Scheme value (including symbol, boolean, number, string, , ; orempty etc.
(make-open), or
(make-close)
given the structure definitions

(define-struct open ())
(define-struct close ())

The open and close parenthesis objects (not the symbols  and ) clearly play a critical role in token streams because they delimit general lists.'|(| '|)|

Examples:

(listify empty) = empty .
(listify (list (make-open) (make-close)) = (list empty) .



(listify (list (make-open) 'a (make-close)) = (list '(a))
(listify (list (make-open) 'a 'b (make-close)) = (list '(a b))
(listify (list (make-open) (make-open) 'a (make-close) 'b (make-close)) = (list '((a) b))

You will probably want to define the following predicate

(define (input? t) (and (not (open? t)) (not (close? t))))

in your program. As a rough guideline follow the  program that we wrote in class on Monday, Feb 2. Note that finding the first input is more parse.ss
involved than finding the first line. You will probably want to explicitly check for errors in the input because they correspond to natural tests on the form of 
the input.

Insertion Sort vs. Quicksort

In class, we've described two different ways of sorting numbers, insertion sort and quicksort.

;; insertion sort
(define (isort alon)
  (cond [(empty? alon) empty]
        [(cons? alon)  (insert (first alon) (isort (rest alon)))]))

(define (insert new sortedlon)
  (cond [(empty? sortedlon) (list new)]
        [else (if (< new (first sortedlon))
                  (cons new sortedlon)
                  (cons (first sortedlon) (insert new (rest sortedlon))))]))

;; quicksort (adapted to functional lists)
(define (qsort alon)
  (cond [(empty? alon) empty]
        [(cons? alon)
         (local [(define pivot (first alon))
                 (define other (rest alon))
                 (define lesser (filter (lambda (n) (<= n pivot)) other))
                 (define greater (filter (lambda (n) (> n pivot)) other))]
           (append (qsort lesser) (list pivot) (qsort greater)))]))

So we have two fundamentally different approaches to sorting a list (and there are lots of others, too). It seems unsurprising that each might behave 
differently. Can we observe this difference? Can we provide explanations? We'll do some timing experiments, outline the theoretical analysis, and see if 
the two are consistent.

If your programs only sort small lists a few times, it doesn't matter; any sort that is easy to write and woks correctly is fine. However, for longer lists, the 
difference really is huge. In the real world, sorting is an operation often done on very long lists (repeatedly).

In DrScheme, there is an expression  that can be used to time how long it takes the computer to evaluate something. For example,(time )expr

(time (isort big-list))

determines how long it takes to sort  using the function  and prints the timing results along with the evaluation result. Since we're only big-list isort
interested in the time, we can avoid seeing the long sorted list by writing

(time (empty? (isort big-list)))

The  operation prints three timing figures, each in milliseconds. The first is how much time elapsed while the computer was working on this time
computation, which is exactly what we're interested in.

Timing Exercises

Partner with someone else in lab to split the following work.

https://wiki.rice.edu/confluence/download/attachments/10946821/parse.ss.txt?version=1&modificationDate=1367952336301&api=v2
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We need some data to use for our timing experiments. Write a function  which constructs a list of naturals starting up: nat -> (list-of nat)
with  in ascending order or retrieve it from a previous lab. For example,  returns . You can probably write it 0 (up 7) (list 0 1 2 3 4 5 6)
faster using  that you can retrieve it. Similarly, write a function  that constructs a list of naturals build-list down: nat -> (list-of nat)
ending in  in descending order. For example,  returns .0 (nums-down 7) (list 6 5 4 3 2 1 0)
Now write a function

rands

that constructs a list of random numbers in the range from  to . To create a single random number in the range from  to , compute 0 32767 0 n (ran
. For larger numbers in the range , try:dom )n+1 [0, 32768)

(define max-rand 32768)
(random max-rand)         ; random is built-in

  is a function in the Scheme library, but it is not a mathematical function, since the output is not determined by the input.Note: random
Make sure you know how to use  by using it to time  on a list of 200 elements. Run the exact same expression again a couple times. time isort
Note that the time varies some. We typically deal with such variation by taking the average of several runs. The variation is caused by a number 
of low-level hardware phenomena that are beyond the scope of this course (see  and ).ELEC 220 COMP 221
Use the  operation to fill in the following chart.time

    input 
size

input 
size

input 
size

    200 1000 5000

  up      

isort down      

  rand      

  up      

qsort down      

  rand      

When you are done, compare your results with those generated by other pairs in the lab.

COMP 280 introduces concepts of how these algorithms behave in general.
The punchline is that we can say that both insertion sort and quicksort on lists are     O(n*2) in the worst case. i.e., for a list of n elements, they each take 

   evaluation steps to sort the list, for some constant . Furthermore, in the "average" case, Quicksort does better: . A well-coded about c n**2 c O(n log n)
formulation of quicksort using arrays almost never exhibits worst-case behavior. COMP 280, and later COMP 482, show precisely what big  notation O
means these statements mean and how to derive them.

Ackermann's Function Example

If you have time, here is the definition of a strange numerical function on natural numbers,
called Ackermann's function:

      A(m,n) = n+1              if m=0
             = A(m-1,1)         if m>0 and n=0
             = A(m-1,A(m,n-1))  if m>1 and n>0

Note that this definition is not structurally recursive. In fact, it  in a structurally recursive manner. In technical jargon, the function is not cannot be defined pri
. See for what that means.mitive recursive COMP 481 

Here's the equivalent Scheme code (assuming  nad  are natural numbers:m n

(define (ack m n)
  (cond [(= m 0) (add1 n)]
        [(= n 0) (ack (sub1 m) 1)]
        [else (ack (sub1 m) (ack m (sub1 n)))]))

http://www.owlnet.rice.edu/~elec220
http://www.clear.rice.edu/comp221/2009/html
http://www.owlnet.rice.edu/~comp280/
http://www.owlnet.rice.edu/~comp481
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Ackermann's function exercises

Try  on some small inputs. Warning: try  inputs for , like 0, 1, 2, or 3, becauseack very, very small m
 takes a very, very long time to compute. You can compute  using DrScheme if you infer a simple non-recursive formula (ack 4 1) (ack 4 1)

for  and add a clause containing this short-cut for computing(ack 3 n)
 to the Scheme code for . Do not try to compute . The answer is more than 19,000 digits long.(ack 3 n) ack (ack 4 2)

Prove why  always terminates for natural numbers. Hint: you need to use "double-induction".ack

Ackermann's function is not useful in constructing real software applications, but it is an important mathematical defintion because it is provably not 
primitive recursive and it plays an important role in the complexity analysis of some algorithms (notably ). In  you will learn about union-find COMP 482 union

 and its complexity analysis.-find

http://www.owlnet.rice.edu/~comp482/
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