
1.

2.

a.
b.

3.
4.

5.

211hw3_S11
Homework 3 (Due Monday 2/7/2011 at 10:00am)
Submit your file via OWL-Space. You will need to use the "Intermediate Student" language to do Problem 18.1.15. If you want to use explicit .ss lambda
notation (anywhere the right hand side of a statement), you will need to use the "Intermediate Student with lambda" language. You may use either define
intermediate level language for the entire assignment if you choose.

Required problems:

14.2.4 [20 pts.]
: Be sure to compare list searching with tree searching, as the problem states.Note

16.3.3 [20 pts.]
:Notes

Test every function thoroughly (5+ examples).
Be sure to include definitions for variations of . The final sentence should read "storing a file a directory in a dir structure both du-dir or
costs 1 storage unit." In other words, given a dir structure, each directory entry (a file or a directory) contained therein costs 1 unit of
storage for the bookkeeping data. For a file, this bookkeeping overhead is in addition to the size of its data.

17.1.2 [20 pts.]
17.6.1 [20 pts.]
Do the problem as specified in the book.

 [10 pts.]: This problem can be solved more elegantly than the solution implied in the book. For the extra credit solution the Extra Credit ignore
book's guidance on "writing functions that consume two complex inputs" in 17.5 and follow the guidance given in class on how to write a function
that processes multiple inputs. Select input as primary (the choice may be in some cases). If you need to deconstruct a second one arbitrary
argument, do it in a function. Use only design template in each function. Hint for solving this problem: only your auxiliary function, auxiliary one
which has a contract and purpose statement almost identical to , should be recursive (call itself directly or indirectly) and it may need to merge
deviate slightly from the structural recursion template. The top level function is recursive.merge not

 If you do the extra credit version of this problem, you do not need to write a solution as specified in the book.Note
17.7.1 [10 pts.]
Note: Make sure you understand section 14.4 before working on this problem. Use this data definition (which includes division an subtraction in
addition to multiplication and addition) as a starting point:

 ; An expression is one of:
 ; - a number
 ; - a symbol
 ; - (make-mul e1 e2) where e1 and e2 are expressions
 ; - (make-add e1 e2) where e1 and e2 are expressions
 ; - (make-div e1 e2) where e1 and e2 are expressions
 ; - (make-sub e1 e2) where e1 and e2 are expressions
 ; given

 (define-struct mul (left right))
 (define-struct add (left right))
 (define-struct div (left right))
 (define-struct sub (left right))

 ; Examples
 ; 5
 ; 'f
 ; (make-mul 5 3)
 ; (make-add 5 3)
 ; (make-div 5 3)
 ; (make-sub 5 3)

 ; Template for processing an expression
 #|
 ; exp-f : exp -> ...
 (define (exp-f ... a-exp ...)
 (cond
 [(number? exp) ...]
 [(symbol? exp) ...]
 [(mul? exp) ... (exp-f ... (mul-left exp) ...) ... (exp-f ... (mul-right exp) ...) ...]
 [(add? exp) ... (exp-f ... (add-left exp) ...) ... (exp-f ... (add-right exp) ...) ...]
 [(div? exp) ... (exp-f ... (div-left exp) ...) ... (exp-f ... (div-right exp) ...) ...]
 [(sub? exp) ... (exp-f ... (sub-left exp) ...) ... (exp-f ... (sub-right exp) ...) ...]))

You are required to extend this definition to include applications, which are expressions like

5.

6.
7.

(f (+ 15 x))
(g y)

Be sure to include a function template with your solution.
18.1.5, parts 1, 4, & 5 [5 pts.]
18.1.15 [5 pts.]

Optional problem for extra credit: [50 pts]
The fibonacci function fib is defined by the following rules (in Scheme notation):

(fib 0) = 1
(fib 1) = 1
(fib (+ n 1)) = (+ (fib n) (fib (- n 1)))

A naive program for computing (lifted directly from the definition) runs in exponential time, i.e. the running time for is proportional to fib (fib n) K*b**n
for some constants and). It is easy to write a program that computes in time proportional to . Your challenge is to write a program that K b (fib n) n
computes in time assuming that all multiplications and additions take constant time, which is unrealistic for large . More precisely, your (fib n) log n
program should compute using only addition and multiplication operations (less than operations for some constant).(fib n) O(log n) K * log n K

: assume . Derive a recurrence for in terms of and . Initially write a program that works when Hints n = 2**m fib 2**(m+1) fib 2**m fib 2**(m-1) n
is a power of 2. Then refine it to a program that works for all .n

: in some definitions of , which slightly changes the recurrence equations but does not affect asymptotic complexity.Note fib fib(0) = 0

	211hw3_S11

